Abstract
This paper introduces a novel framework for diffusion tensor combination, which can be used for tensor averaging, clustering, interpolation, and regularization. The framework is based on the physical interpretation of the tensors as the covariance matrices of Gaussian probability distributions. The symmetric Kullback-Leibler divergence provides a natural distance measure on these distributions, which leads to a closed-form expression for the distance between any two diffusion tensors, as well as for the weighted average of an arbitrary number of tensors. We illustrate the application of our technique in four different scenarios: (a) to combine tensor data from multiple subjects and generate population atlases from ten young and ten older subjects, (b) to perform k-means clustering and generate a compact Gaussian mixture of multiple tensors, (c) to interpolate between tensors, and (d) to regularize (i.e., smooth) noisy tensor data. For boundary-preserving regularization, we also propose a non-linear two-stage smoothing algorithm that can be considered remotely similar to a median filter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)
Shimony, J.S., McKinstry, R.C., Akbudak, E., et al.: Quantitative diffusion-tensor anisotropy brain MR imaging: Normative human data and anatomic analysis. Radiology 212(3), 770–784 (1999)
Mori, S., Crain, B.J., Chacko, V.P., et al.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)
Xu, D., Mori, S., Shen, D., et al.: Spatial normalization of diffusion tensor fields. Magn. Reson. Med. 50(1), 175–182 (2003)
Jones, D.K., Griffin, L.D., Alexander, D.C., et al.: Spatial normalization and averaging of diffusion tensor MRI data sets. NeuroImage 17(2), 592–617 (2002)
Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004)
Batchelor, P.G., Moakher, M., Atkinson, D., et al.: A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53(1), 221–225 (2005)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings, Fifth Berkeley Symposium on Mathematical Statistics and Probability vol. 1., University of California Press, pp. 281–296 (1967)
Myrvoll, T.A.: Adaptation of Hidden Markov Models using Maximum a Posteriori Linear Regression with Hierarchical Priors. PhD thesis, Norwegian University of Science and Technology, Trondheim (2002)
Myrvoll, T.A., Soong, F.K.: Optimal clustering of multivariate normal distributions using divergence and its application to HMM adaptation. In: Proceedings (ICASSP ’03). 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, vol. I, pp. 552–555. IEEE Press, New York (2003)
Sullivan, E.V., Adalsteinsson, E., Pfefferbaum, A.: Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb. Cortex 16(7), 1030–1039 (2005)
Salat, D., Tuch, D., Greve, D., et al.: Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol. Aging 26(8), 1215–1227 (2005)
Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(5), 1077–1088 (2003)
Parker, G.J., Alexander, D.C.: Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 684–695. Springer, Heidelberg (2003)
Behrens, T., Johansen Berg, H., Jbabdi, S., et al.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)
Alexander, D.C., Pierpaoli, C., Basser, P.J., et al.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imag. 20(11), 1131–1139 (2001)
3D Slicer, available online: http://www.slicer.org .
Rueckert, D., Sonoda, L.I., Hayes, et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)
Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32(1), 71–86 (1999)
Rohlfing, T., Maurer, J.C.R., Bluemke, D.A., et al.: Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans. Med. Imag. 22(6), 730–741 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Rohlfing, T., Sullivan, E.V., Pfefferbaum, A. (2007). Divergence-Based Framework for Diffusion Tensor Clustering, Interpolation, and Regularization. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-540-73273-0_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73272-3
Online ISBN: 978-3-540-73273-0
eBook Packages: Computer ScienceComputer Science (R0)