Nothing Special   »   [go: up one dir, main page]

Skip to main content

Divergence-Based Framework for Diffusion Tensor Clustering, Interpolation, and Regularization

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

  • 2285 Accesses

Abstract

This paper introduces a novel framework for diffusion tensor combination, which can be used for tensor averaging, clustering, interpolation, and regularization. The framework is based on the physical interpretation of the tensors as the covariance matrices of Gaussian probability distributions. The symmetric Kullback-Leibler divergence provides a natural distance measure on these distributions, which leads to a closed-form expression for the distance between any two diffusion tensors, as well as for the weighted average of an arbitrary number of tensors. We illustrate the application of our technique in four different scenarios: (a) to combine tensor data from multiple subjects and generate population atlases from ten young and ten older subjects, (b) to perform k-means clustering and generate a compact Gaussian mixture of multiple tensors, (c) to interpolate between tensors, and (d) to regularize (i.e., smooth) noisy tensor data. For boundary-preserving regularization, we also propose a non-linear two-stage smoothing algorithm that can be considered remotely similar to a median filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  • Shimony, J.S., McKinstry, R.C., Akbudak, E., et al.: Quantitative diffusion-tensor anisotropy brain MR imaging: Normative human data and anatomic analysis. Radiology 212(3), 770–784 (1999)

    Google Scholar 

  • Mori, S., Crain, B.J., Chacko, V.P., et al.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)

    Article  Google Scholar 

  • Xu, D., Mori, S., Shen, D., et al.: Spatial normalization of diffusion tensor fields. Magn. Reson. Med. 50(1), 175–182 (2003)

    Article  Google Scholar 

  • Jones, D.K., Griffin, L.D., Alexander, D.C., et al.: Spatial normalization and averaging of diffusion tensor MRI data sets. NeuroImage 17(2), 592–617 (2002)

    Article  Google Scholar 

  • Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004)

    Google Scholar 

  • Batchelor, P.G., Moakher, M., Atkinson, D., et al.: A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53(1), 221–225 (2005)

    Article  Google Scholar 

  • MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings, Fifth Berkeley Symposium on Mathematical Statistics and Probability vol.  1., University of California Press, pp. 281–296 (1967)

    Google Scholar 

  • Myrvoll, T.A.: Adaptation of Hidden Markov Models using Maximum a Posteriori Linear Regression with Hierarchical Priors. PhD thesis, Norwegian University of Science and Technology, Trondheim (2002)

    Google Scholar 

  • Myrvoll, T.A., Soong, F.K.: Optimal clustering of multivariate normal distributions using divergence and its application to HMM adaptation. In: Proceedings (ICASSP ’03). 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, vol. I, pp. 552–555. IEEE Press, New York (2003)

    Google Scholar 

  • Sullivan, E.V., Adalsteinsson, E., Pfefferbaum, A.: Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb. Cortex 16(7), 1030–1039 (2005)

    Article  Google Scholar 

  • Salat, D., Tuch, D., Greve, D., et al.: Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol. Aging 26(8), 1215–1227 (2005)

    Article  Google Scholar 

  • Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(5), 1077–1088 (2003)

    Article  Google Scholar 

  • Parker, G.J., Alexander, D.C.: Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 684–695. Springer, Heidelberg (2003)

    Google Scholar 

  • Behrens, T., Johansen Berg, H., Jbabdi, S., et al.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)

    Article  Google Scholar 

  • Alexander, D.C., Pierpaoli, C., Basser, P.J., et al.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imag. 20(11), 1131–1139 (2001)

    Article  Google Scholar 

  • 3D Slicer, available online: http://www.slicer.org .

  • Rueckert, D., Sonoda, L.I., Hayes, et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)

    Article  Google Scholar 

  • Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32(1), 71–86 (1999)

    Article  Google Scholar 

  • Rohlfing, T., Maurer, J.C.R., Bluemke, D.A., et al.: Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans. Med. Imag. 22(6), 730–741 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Rohlfing, T., Sullivan, E.V., Pfefferbaum, A. (2007). Divergence-Based Framework for Diffusion Tensor Clustering, Interpolation, and Regularization. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics