Nothing Special   »   [go: up one dir, main page]

Skip to main content

A High-Throughput Bioinformatics Platform for Mass Spectrometry-Based Proteomics

  • Conference paper
Data Integration in the Life Sciences (DILS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4544))

Included in the following conference series:

  • 727 Accesses

Abstract

The success of mass spectrometry-based proteomics in emerging applications such as biomarker discovery and clinical diagnostics, is predicated substantially on its ability to achieve growing demands for throughput. Support for high throughput implies sophisticated tracking of experiments and the experimental steps, larger amounts of data to be organized and summarized, more complex algorithms for inferring and tracking protein expression across multiple experiments, statistical methods to access data quality, and a streamlined proteomics-centric bioinformatics environment to establish the biological context and relevance of the experimental measurements. This paper presents a bioinformatics platform that was built for an industrial mass spectrometry-based proteomics laboratory focusing on biomarker discovery. The basis of the platform is a robust and scalable information management environment supported by database and workflow management technology that is employed for the integration of heterogeneous data, applications and processes across the entire laboratory workflow. This paper focuses on selected features of the platform which include: (a) a method for improving the accuracy of protein assignment, (b) novel software tools for protein expression analysis that combine differential MS quantitation with tandem MS for peptide identification, and (c) integration of methods to aid the biological relevance and statistical significance of differentially expressed proteins.

The work reported in this paper was carried out by the authors at MDS Proteomics / Protana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422(6928), 198–207 (2003)

    Article  Google Scholar 

  • Baldwin, M.A.: Protein identification by mass spectrometry: issues to be considered. Mol. Cell Proteomics 3(1), 1–9 (2004)

    Article  Google Scholar 

  • Boyle, E.I., Weng, S., et al.: GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20(18), 3710–3715 (2004)

    Article  Google Scholar 

  • Cargile, B.J., Bundy, J.L., et al.: Potential for false positive identifications from large databases through tandem mass spectrometry. J Proteome Res. 3(5), 1082–1085 (2004)

    Article  Google Scholar 

  • Chernushevich, I., Loboda, A., et al.: An introduction to quadrupole-time-of-flight mass spectrometry. Journal of Mass Spectrometry 26, 859–865 (2001)

    Google Scholar 

  • Craig, R., Beavis, R.C.: TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9), 1466–1467 (2004)

    Article  Google Scholar 

  • Fenyo, D., Beavis, R.C.: A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal. Chem. 75(4), 768–774 (2003)

    Article  Google Scholar 

  • Horn, D.M., Zubarev, R.A., et al.: Automated Reduction and Interpretation of High Resolution Electrospray Mass Spectra of Large Molecules. Journal of American Society for Mass Spectrometry 11, 320–322 (2000)

    Article  Google Scholar 

  • Hosack, D.A., Dennis Jr., G., et al.: Identifying biological themes within lists of genes with EASE. Genome Biol. 4(10) (2003)

    Google Scholar 

  • Johnson, K.L., Mason, C.J., et al.: Analysis of the Low Molecular Weight Fraction of Serum by LC-Dual ESI-FT-ICR Mass Spectrometry: Precision of Retention Time, Mass, and Ion Abundance. Analytical Chemistry 76, 5097–5103 (2004)

    Article  Google Scholar 

  • Keller, A., Eng, J., et al.: A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Molecular Systems Biology (2005)

    Google Scholar 

  • Kersey, P.J., Duarte, J., et al.: The International Protein Index: an integrated database for proteomics experiments. Proteomics 4(7), 1985–1988 (2004)

    Article  Google Scholar 

  • Kiebel, G.R., Anderson, G.A., et al.: Proteomics Research Information Storage and Management (PRISM) System, Pacific Northwest National Laboratory (2004)

    Google Scholar 

  • Kristensen, D.B., Brond, J.C., et al.: Experimental Peptide Identification Repository (EPIR): an integrated peptide-centric platform for validation and mining of tandem mass spectrometry data. Mol. Cell Proteomics 3(10), 1023–1038 (2004)

    Article  Google Scholar 

  • Li, X.-J., Zhang, H., et al.: Automated Statistical Analysis of Protein Abundance Ratios from Data Generated by Stable-Isotope Dilution and Tandem Mass Spectrometry. Analytical Chemistry 75(23), 6648–6657 (2003)

    Article  Google Scholar 

  • Lilien, R., Farid, H., et al.: Probabilistic Disease Classification of Expression-Dependent Proteomic Data from Mass Spectrometry of Human Serum. Journal of Computational Biology 10(6), 925–946 (2003)

    Article  Google Scholar 

  • Listgarten, J., Emili, A.: Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol. Cell Proteomics 4(4), 419–434 (2005)

    Article  Google Scholar 

  • Ludascher, B., Goble, C.: Guest Editors’ Introduction to the Special Section on Scientific Workflows. SIGMOD Rec. 34(3), 4–5 (2005)

    Article  Google Scholar 

  • MacCoss, M.J., Wu, C.C., et al.: A Correlation Algorithm for the Automated Quantitative Analysis of Shothun Proteomics. Analytical Chemistry 75(24), 6912–6921 (2003)

    Article  Google Scholar 

  • Nesvizhskii, A.I., Keller, A., et al.: A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75(17), 4646–4658 (2003)

    Article  Google Scholar 

  • Pedrioli, P.G., Eng, J.K., et al.: A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol 22(11), 1459–1466 (2004)

    Article  Google Scholar 

  • Perkins, D.N., Pappin, D.J., et al.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567 (1999)

    Article  Google Scholar 

  • Petricoin, E., Ardekani, A., et al.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 7(9306), 572–577 (2002)

    Article  Google Scholar 

  • Senko, M., Beu, S., et al.: Automated Assignment of Charge States from Resolved Isotopic Peaks for Multiply Charged Ions. Journal of American Society for Mass Spectrometry 6, 52–56 (1995)

    Article  Google Scholar 

  • Simmhan, Y., Plale, B., et al.: A Survey of Data Provenance in e-Science. SIGMOD Rec. 34(3), 31–36 (2005)

    Article  Google Scholar 

  • Simon, R.M., Korn, E.L., et al.: Design and Analysis of DNA Microarray Investigations. Springer, Heidelberg (2003)

    Google Scholar 

  • Smith, R., Loo, J., et al.: New Developments in Biochemical Mass Spectrometry: Electrospray Ionization. Analytical Chemistry 62, 882–899 (1990)

    Article  Google Scholar 

  • Syka, J., Marto, J., et al.: Novel Linear Quadrupole Ion Trap/FT Mass Spectrometer: Performance Characterization and Use in the Comparative Analysis of Histone H3 Post-translational Modifications. Journal of Proteomics Research 3, 621–626 (2004)

    Article  Google Scholar 

  • Tabb, D.L., McDonald, W.H., et al.: DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res. 1(1), 21–26 (2002)

    Article  Google Scholar 

  • Taylor, C.F., Paton, N.W., et al.: A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotech 21(3), 247–254 (2003)

    Article  Google Scholar 

  • Yang, X., Dondeti, V., et al.: DBParser: web-based software for shotgun proteomic data analyses. J Proteome Res. 3(5), 1002–1008 (2004)

    Article  Google Scholar 

  • Zeeberg, B.R., Feng, W., et al.: GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4(4) (2003)

    Google Scholar 

  • Zhang, Z., Marshall, A.: A Universal Algorithm for Fast and Automated Charge State Deconvolution of Electrospray Mass-to-Charge Ratio Spectra. Journal of American Society for Mass Spectrometry 9, 320–332 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sarah Cohen-Boulakia Val Tannen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Topaloglou, T., Dharsee, M., Ewing, R.M., Bukhman, Y. (2007). A High-Throughput Bioinformatics Platform for Mass Spectrometry-Based Proteomics. In: Cohen-Boulakia, S., Tannen, V. (eds) Data Integration in the Life Sciences. DILS 2007. Lecture Notes in Computer Science(), vol 4544. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73255-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73255-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73254-9

  • Online ISBN: 978-3-540-73255-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics