Abstract
Predicative analysis of recursion schema is a method to characterize complexity classes like the class of polynomial time functions. This analysis comes from the works of Bellantoni and Cook, and Leivant. Here, we refine predicative analysis by using a ramified Ackermann’s construction of a non-primitive recursive function. We obtain a hierarchy of functions which characterizes exactly functions, which are computed in O(n k) over register machine model of computation. Then, we are able to diagonalize using dependent types in order to obtain an exponential function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackermann, W.: Zum Hilbertschen Aufbau der reellen Zahlen. Math. annalen 99, 118–133 (1928)
Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-time functions. Computational Complexity 2, 97–110 (1992)
Bellantoni, S., Niggl, K.-H.: Ranking primitive recursions: The low Grzegorczyk classes revisited. SIAM Journal on Computing 29(2), 401–415 (1999)
Caporaso, S., Covino, E., Pani, G.: A predicative approach to the classification problem. J. Funct. Program. 11(1), 95–116 (2001)
Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science, pp. 24–30. North-Holland, Amsterdam (1962)
Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958) Republished with English translation and explanatory notes by A. S. Troelstra in Kurt Gödel: Collected Works, Vol. II. S. Feferman, ed. Oxford University Press, Oxford (1990)
Jones, N.: Computability and complexity, from a programming perspective. MIT Press, Cambridge (1997)
Dal Lago, U., Baillot, P.: Light affine logic, uniform encoding and polynomial time. Mathematical Structures in Computer Science 16(4), 713–733 (2006)
Leivant, D.: A foundational delineation of computational feasiblity. In: LICS’91. Proceedings of the Sixth IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, Los Alamitos (1991)
Leivant, D.: Predicative recurrence and computational complexity I: Word recurrence and poly-time. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, Birkhäuser, pp. 320–343 (1994)
Leivant, D.: Ramified recurrence and computational complexity III: Higher type recurrence and elementary complexity. Annals of Pure and Applied Logic 96(1-3), 209–229 (1999)
Leivant, D., Marion, J.-Y.: Lambda calculus characterizations of poly-time. Fundamenta Informaticae 19(1,2), 167–184 (1993)
Leivant, D., Marion, J.-Y.: A characterization of alternating log time by ramified recurrence. Theoretical Computer Science 236(1-2), 192–208 (2000)
Neergaard, P.M., Mairson, H.: Lal is square: Representation and expressivness in light affine and logic. In: Implicit Computational complexity (2002)
Simmon, H.: Tiering as a recursion technique. Bulletin of Symbolic Logic 11(3), 321–350 (2005)
Simmons, H.: The realm of primitive recursion. Archive for Mathematical Logic 27, 177–188 (1988)
Simmons, H.: Derivation and Computation. Tracts in theoretical computer science, Cambridge, vol. 51 (2000)
Sorensen, M., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism. DIKU-rapport 98/14 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Marion, JY. (2007). Predicative Analysis of Feasibility and Diagonalization. In: Della Rocca, S.R. (eds) Typed Lambda Calculi and Applications. TLCA 2007. Lecture Notes in Computer Science, vol 4583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73228-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-73228-0_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73227-3
Online ISBN: 978-3-540-73228-0
eBook Packages: Computer ScienceComputer Science (R0)