Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicative Analysis of Feasibility and Diagonalization

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4583))

Included in the following conference series:

Abstract

Predicative analysis of recursion schema is a method to characterize complexity classes like the class of polynomial time functions. This analysis comes from the works of Bellantoni and Cook, and Leivant. Here, we refine predicative analysis by using a ramified Ackermann’s construction of a non-primitive recursive function. We obtain a hierarchy of functions which characterizes exactly functions, which are computed in O(n k) over register machine model of computation. Then, we are able to diagonalize using dependent types in order to obtain an exponential function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackermann, W.: Zum Hilbertschen Aufbau der reellen Zahlen. Math. annalen 99, 118–133 (1928)

    Article  Google Scholar 

  • Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-time functions. Computational Complexity 2, 97–110 (1992)

    Article  MATH  Google Scholar 

  • Bellantoni, S., Niggl, K.-H.: Ranking primitive recursions: The low Grzegorczyk classes revisited. SIAM Journal on Computing 29(2), 401–415 (1999)

    Article  Google Scholar 

  • Caporaso, S., Covino, E., Pani, G.: A predicative approach to the classification problem. J. Funct. Program. 11(1), 95–116 (2001)

    Article  MATH  Google Scholar 

  • Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science, pp. 24–30. North-Holland, Amsterdam (1962)

    Google Scholar 

  • Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958) Republished with English translation and explanatory notes by A. S. Troelstra in Kurt Gödel: Collected Works, Vol. II. S. Feferman, ed. Oxford University Press, Oxford (1990)

    Google Scholar 

  • Jones, N.: Computability and complexity, from a programming perspective. MIT Press, Cambridge (1997)

    MATH  Google Scholar 

  • Dal Lago, U., Baillot, P.: Light affine logic, uniform encoding and polynomial time. Mathematical Structures in Computer Science 16(4), 713–733 (2006)

    Article  MATH  Google Scholar 

  • Leivant, D.: A foundational delineation of computational feasiblity. In: LICS’91. Proceedings of the Sixth IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  • Leivant, D.: Predicative recurrence and computational complexity I: Word recurrence and poly-time. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, Birkhäuser, pp. 320–343 (1994)

    Google Scholar 

  • Leivant, D.: Ramified recurrence and computational complexity III: Higher type recurrence and elementary complexity. Annals of Pure and Applied Logic 96(1-3), 209–229 (1999)

    Article  MATH  Google Scholar 

  • Leivant, D., Marion, J.-Y.: Lambda calculus characterizations of poly-time. Fundamenta Informaticae 19(1,2), 167–184 (1993)

    MATH  Google Scholar 

  • Leivant, D., Marion, J.-Y.: A characterization of alternating log time by ramified recurrence. Theoretical Computer Science 236(1-2), 192–208 (2000)

    Article  Google Scholar 

  • Neergaard, P.M., Mairson, H.: Lal is square: Representation and expressivness in light affine and logic. In: Implicit Computational complexity (2002)

    Google Scholar 

  • Simmon, H.: Tiering as a recursion technique. Bulletin of Symbolic Logic 11(3), 321–350 (2005)

    Article  Google Scholar 

  • Simmons, H.: The realm of primitive recursion. Archive for Mathematical Logic 27, 177–188 (1988)

    Article  MATH  Google Scholar 

  • Simmons, H.: Derivation and Computation. Tracts in theoretical computer science, Cambridge, vol. 51 (2000)

    Google Scholar 

  • Sorensen, M., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism. DIKU-rapport 98/14 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Simona Ronchi Della Rocca

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Marion, JY. (2007). Predicative Analysis of Feasibility and Diagonalization. In: Della Rocca, S.R. (eds) Typed Lambda Calculi and Applications. TLCA 2007. Lecture Notes in Computer Science, vol 4583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73228-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73228-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73227-3

  • Online ISBN: 978-3-540-73228-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics