Nothing Special   »   [go: up one dir, main page]

Skip to main content

Complexity Theory for Splicing Systems

  • Conference paper
Developments in Language Theory (DLT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4588))

Included in the following conference series:

  • 411 Accesses

Abstract

This paper proposes a notion of time complexity in splicing systems and presents fundamental properties of SPLTIME, the class of languages with splicing system time complexity t(n). Its relations to classes based on standard computational models are explored. It is shown that for any function t(n), SPLTIME[t(n)] is included in 1NSPACE[t(n)]. Expanding on this result, 1NSPACE[t(n)] is characterized in terms of splicing systems: it is the class of languages accepted by a t(n)-space uniform family of extended splicing systems having production time O(t(n)) with regular rules described by finite automata with at most a constant number of states. As to lower bounds, it is shown that for all functions t(n) ≥ logn, all languages accepted by a pushdown automaton with maximal stack height t(|x|) for a word x are in SPLTIME[t(n)]. From this result, it follows that the regular languages are in SPLTIME[O(log(n))] and that the context-free languages are in SPLTIME[O(n)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Book, R.V.: Time-bounded grammars and their languages. Journal of Computer and System Sciences 5(4), 397–429 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Culik II, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Applied Mathematics 31, 261–277 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gladkiĭ, A.V.: On the complexity of derivations in phase-structure grammars. Algebra i Logika Seminar 3(5-6), 29–44 (1964) (in Russian)

    Google Scholar 

  4. Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bulletin of Mathematical Biology 49, 737–759 (1987)

    MATH  MathSciNet  Google Scholar 

  5. Hartmanis, J., Mahaney, S.R.: Languages simultaneously complete for one-way and two-way log-tape automata. SIAM Journal of Computing 10(2), 383–390 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hopcroft, J E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, MA (1979)

    MATH  Google Scholar 

  7. Ladner, R.E., Lynch, N.A.: Relativization of questions about logspace computability. Mathematical Systems Theory 10(1), 19–32 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ogihara, M.: Relating the minimum model for DNA computation and Boolean circuits. Proceedings of the 1999 Genetic and Evolutionary Computation Conference, pp. 1817–1821. Morgan Kaufmann Publishers, San Francisco, CA (1999)

    Google Scholar 

  9. Ogihara, M., Ray, A.: The minimum DNA computation model and its computational power. In: Ogihara, M., Ray, A. (eds.) Unconventional Models of Computation, Singapore, pp. 309–322. Springer, Heidelberg (1998)

    Google Scholar 

  10. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, MA (1994)

    MATH  Google Scholar 

  11. Păun, G.: Regular extended H systems are computationally universal. Journal of Automata, Languages, Combinatorics 1(1), 27–36 (1996)

    MATH  Google Scholar 

  12. Păun, G., Rozenberg, G., Salomaa, A.: Computing by splicing. Theoretical Computer Science 168(2), 32–336 (1996)

    Google Scholar 

  13. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing - New Computing Paradigms. Springer-Verlag, Berlin Heidelberg (1998)

    MATH  Google Scholar 

  14. Pixton, D.: Regularity of splicing languages. Discrete Applied Mathematics 69, 101–124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Reif, J.H.: Parallel molecular computation. Proceedings of the 7th ACM Symposium on Parallel Algorithms and Architecture, pp. 213–223. ACM Press, New York (1995)

    Google Scholar 

  16. Ruzzo, W.: On uniform circuit complexity. Journal of Computer and System Sciences 22, 365–383 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Venkateswaran, H.: Properties that characterize LOGCFL. Journal of Computer and System Sciences 43, 380–404 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tero Harju Juhani Karhumäki Arto Lepistö

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loos, R., Ogihara, M. (2007). Complexity Theory for Splicing Systems. In: Harju, T., Karhumäki, J., Lepistö, A. (eds) Developments in Language Theory. DLT 2007. Lecture Notes in Computer Science, vol 4588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73208-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73208-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73207-5

  • Online ISBN: 978-3-540-73208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics