Abstract
The authors consider combining correlations of different orders in kernel principal component analysis (kPCA) and kernel canonical correlation analysis (kCCA) with the correlation kernels. We apply combining methods, e.g., the sums of the correlation kernels, Cartesian spaces of the principal components or the canonical variates and the voting of kPCAs and kCCAs output and compare their performance in the classification of texture images. Further, we apply Kansei information on the images obtained through questionnaires to the public to kCCA and evaluate its effectiveness.
Chapter PDF
Similar content being viewed by others
Keywords
References
Schölkopf, B., et al.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)
Kuss, M., Graepel, T.: The geometry of kernel canonical correlation analysis. Technical Report 108, Max Plank Institute for Biological Cybernetics (2002)
Melzer, T., et al.: Appearance models based on kernel canonical correlation analysis. Pattern Recognition 36, 1961–1971 (2003)
Hardoon, D.R., et al.: Canonical correlation analysis; an overview with application to learning methods. Technical Report CSD-TR-03-02, Dept. of Computer Science, University of London (2003)
Ruiz, A., López-de-Teruel, P.E.: Nonlinear kernel-based statistical pattern analysis. IEEE Trans. Neural Networks 12, 16–32 (2001)
Müller, K.-R., et al.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks 12, 181–201 (2001)
Popovici, V., Thiran, J.-P.: Higher order autocorrelations for pattern classification. In: Proc. IEEE 2001 International Conference on Image Processing (ICIP2001), pp. 724–727 (2001)
Popovici, V., Thiran, J.-P.: Pattern recognition using higher-order local autocorrelation coefficients. Pattern Recognition Letters 25, 1107–1113 (2004)
McLaughlin, J.A., Raviv, J.: Nth-order autocorrelations in pattern recognition. Information and Control 12, 121–142 (1968)
Horikawa, Y.: Comparison of support vector machines with autocorrelation kernels for invariant texture classification. In: Proc. 17th International Conference on Pattern Recognition (ICPR 2004), vol. 1, pp. 660–663 (2004)
Horikawa, Y.: Use of autocorrelation kernels in kernel canonical correlation analysis for texture classification. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 1235–1240. Springer, Heidelberg (2004)
Horikawa, Y.: Modification of correlation kernels in SVM, KPCA and KCCA in texture classification. In: Proc. 2005 International Joint Conference on Neural Networks (IJCNN 2005), vol. 2, pp. 2006–2011 (2005)
Kittler, J.K., et al.: On combining classifiers. IEEE Trans. Patt. Anal. Machine Intell. 20, 226–239 (1998)
Jain, A.K., et al.: Statistical pattern recognition: A review. IEEE Trans. Patt. Anal. Machine Intell. 22, 4–37 (2000)
Kurita, T., Kato, T.: Learning of personal visual impression for image database systems. In: Proc. the Second International Conference on Document Analysis and Recognition, pp. 547–552 (1993)
Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)
Chijiiwa, H.: Color Science (in Japanese), Fukumura, Japan (1983), J.Suzuki’s Website: http://www.teu.ac.jp/chiit/~jsuzuki/kanseiwr.html
AMOVIP-DB, http://www.iv.optica.csic.es/projects/database.html
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Horikawa, Y., Ohnishi, Y. (2007). Comparison of Combining Methods of Correlation Kernels in kPCA and kCCA for Texture Classification with Kansei Information. In: Ersbøll, B.K., Pedersen, K.S. (eds) Image Analysis. SCIA 2007. Lecture Notes in Computer Science, vol 4522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73040-8_71
Download citation
DOI: https://doi.org/10.1007/978-3-540-73040-8_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73039-2
Online ISBN: 978-3-540-73040-8
eBook Packages: Computer ScienceComputer Science (R0)