Abstract
The correct determination of the position of incident photons is a crucial issue in PET imaging.In this paper we study the use of Neural Networks (NNs) for position estimation of photons impinging on gamma-ray detector modules for PET cameras based on continuous scintillators and Multi-Anode Photomultiplier Tubes (MA-PMTs). We have performed a thorough analysis of the NN architecture and training procedures, using realistic simulated inputs, in order to achieve the best results in terms of spatial resolution and bias correction. The results confirm that NNs can partially model and correct the non-uniform detector response using only the position-weighted signals from a simple 2D Discretized Positioning Circuit (DPC). Linearity degradation for oblique incidence is also investigated. Finally, the NN can be implemented in hardware for parallel real time corrected Line-of-Response (LOR) estimation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agostinelli, S.: GEANT4: A Simulation Toolkit. Stanford, SLAC Rep. SLAC-PUB-9350, CA, Stanford Linear Accelerator Center, Stanford Univ. (2002)
Aliaga, R.J., Martinez, J.D., Gadea, R., Sebastia, A., Benlloch, J.M., Sanchez, F., Pavon, N., Lerche, C.: Corrected position estimation in PET detector modules with multi-anode PMTs using neural networks. IEEE Trans. Nucl. Sci. 53(3), 776–783 (2006)
Anger, H.: Scintillation camera. Rev. Sci. Instrum. 29(1), 27–33 (1958)
Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y.: Optimal nonlinear line-of-flight estimation in positron emission tomography. IEEE Trans. Nucl. Sci. 50(3), 421–426 (2003)
Bruyndockx, P., Léonard, S., Tavernier, S., Lemaître, C., Devroede, O., Wu, Y., Kreiguer, M.: Neural network-based position estimators for PET detectors. IEEE Trans. Nucl. Sci. 51(5), 2520–2525 (2004)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River (1999)
Lerche, C.W., Benlloch, J.M., Sánchez, F., Pavón, N., Giménez, N., Fernández, M., Giménez, M., Escat, B., Cerdá, J., Martínez, J.D., Sebastiá, A.: Depth of gamma-ray interaction within continuous crystals from the width of its scintillation light-distribution. IEEE Trans. Nucl. Sci. 52(3), 560–572 (2005)
Neural Network Toolbox for MATLAB 7.0 (release 14). The Mathworks, Inc.
Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values ot the adaptive weights. In: Proc. Int. Joint Conf. Neural Networks, vol. 3, pp. 21–26 (1990)
Ollinger, J.M., Fessler, J.A.: Positron-Emission Tomography. IEEE Signal Proc. Magazine, 43–55 (January 1997)
Riedmiller, M., Braun, M.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: IEEE Proc., Int. Conf. on Neural Networks (1993)
Siegel, S., Silverman, R.W., Shao, Y., Cherry, S.R.: Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. IEEE Trans. Nucl. Sci. 43(3), 1634–1641 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mateo, F., Aliaga, R.J., Martínez, J.D., Monzó, J.M., Gadea, R. (2007). Incidence Position Estimation in a PET Detector Using a Discretized Positioning Circuit and Neural Networks. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_82
Download citation
DOI: https://doi.org/10.1007/978-3-540-73007-1_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73006-4
Online ISBN: 978-3-540-73007-1
eBook Packages: Computer ScienceComputer Science (R0)