Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Parallel Single Front Genetic Algorithm (PSFGA) in Dynamic Multi-objective Optimization

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

  • 2331 Accesses

Abstract

This paper analyzes the use of the, previously proposed, Parallel Single Front Genetic Algorithm (PSFGA) in applications in which the objective functions, the restrictions, and hence also solutions can change over the time. These dynamic optimization problems appear in quite different real applications with relevant socio-economic impacts. PSFGA uses a master process that distributes the population among the processors in the system (that evolve their corresponding solutions according to an island model), and collects and adjusts the set of local Pareto fronts found by each processor (this way, the master also allows an implicit communication among islands). The procedure exclusively uses non-dominated individuals for the selection and variation, and maintains the diversity of the approximation to the Pareto front by using a strategy based on a crowding distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Branke, J., Mattfeld, D.C.: Anticipation and flexibility in dynamic scheduling. International Journal of Production Research 43(15), 3103–3129 (2005)

    Article  Google Scholar 

  2. Farina, M., Deb, K., Amato, P.: Dynamic Multi-objective Optimization Problems: Test cases, Approximations, and Applications. IEEE Trans. on Evolutionary Computation 8(5), 342–425 (2004)

    Article  Google Scholar 

  3. Coello, C.A.: An Updated Survey of GA-Based Multi-objective Optimization Techniques. Technical Report Lania-RD-98-08, Laboratorio Nacional de Informática Avanzada (LANIA), México (1998)

    Google Scholar 

  4. Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain Environments – A Survey. IEEE Trans. on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  5. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  6. Bibliography about Evolutionary Algorithms for Multi-objective Optimization: http://www.lania.mx/~ccoello/EMOO

  7. EvoDOP (Evolutionary Algorithms for Dynamic Optimization Problems): http://www.aifb.uni-karlsruhe.de/~jbr/EvoDOP

  8. Weicker, K.: Performance Measures for Dynamic Environments. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)

    Google Scholar 

  9. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multi-objective Evolutionary Algorithms: Empirical Results. Tech. Report 70, ETH Zurich (December 1999)

    Google Scholar 

  10. Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in Engineering Parallel Multi-objective Evolutionary Algorithms. IEEE Trans. Evolutionary Computation 7(2), 144–173 (2003)

    Article  Google Scholar 

  11. Toro, F., Ortega, J., Ros, E., Mota, B., Paechter, B., Martín, J.M.: PSFGA: Parallel processing and evolutionary computation for multi-objective optimization. Parallel Computing 30, 721–739 (2004)

    Article  Google Scholar 

  12. Toro, F., Ros, E., Mota, S., Ortega, J.: Evolutionary Algorithms for Multi-objective and Multimodal Optimization of Diagnostic Schemes. IEEE Trans. on Biomedical Engineering 53(2), 178–189 (2006)

    Article  Google Scholar 

  13. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Information Processing Letters 82, 7–13 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cámara, M., Ortega, J., de Toro, F. (2007). The Parallel Single Front Genetic Algorithm (PSFGA) in Dynamic Multi-objective Optimization. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics