Nothing Special   »   [go: up one dir, main page]

Skip to main content

ViSOM Ensembles for Visualization and Classification

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

Abstract

In this paper ensemble techniques have been applied in the frame of topology preserving mappings in two applications: classification and visualization. These techniques are applied for the first time to the ViSOM and their performance is compared with ensemble combination of some other topology preserving mapping such as the SOM or the MLSIM. Several methods to obtain a meaningful combination of the components of an ensemble are presented and tested together with the existing ones in order to identify the best performing method in the applications of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K., Vainio, L.: A Principle of Neural Associative Memory. Neuroscience 2, 1065–1076 (1977)

    Article  Google Scholar 

  2. Vesanto, J.: Data Mining Techniques Based on the Self-Organizing Map. Engineering Physics and Mathematics. Helsinki University of Technology. Espoo, Finland (1997)

    Google Scholar 

  3. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms (2004)

    Google Scholar 

  4. Ron, M., Gunnar, R.: An Introduction to Boosting and Leveraging. In: Advanced Lectures on Machine Learning: Machine Learning Summer School 2002, Canberra, Australia, Revised Lectures, February 11-22, 2002, pp. 118–183 (2003)

    Google Scholar 

  5. Kohonen, T.: The Self-Organizing Map. Neurocomputing 21, 1–6 (1998)

    Article  MATH  Google Scholar 

  6. Kaski, S.: Data Exploration Using Self-Organizing Maps. Department of Computer Science and Engineering. Helsinki University of Technology. Espoo, Finland (1997)

    Google Scholar 

  7. Yin, H.: Data Visualisation and Manifold Mapping Using the Visom. Neural Networks 15, 1005–1016 (2002)

    Article  Google Scholar 

  8. Yin, H.: Visom - a Novel Method for Multivariate Data Projection and Structure Visualization. IEEE Transactions on Neural Networks 13, 237–243 (2002)

    Article  Google Scholar 

  9. Fyfe, C.: A Scale-Invariant Feature Map. Network: Computation in Neural Systems 7, 269–275 (1996)

    Article  Google Scholar 

  10. Corchado, E., Fyfe, C.: The Scale Invariant Map and Maximum Likelihood Hebbian Learning. In: International Conference on Knowledge-Based and Intelligent Information and Engineering System (2002)

    Google Scholar 

  11. Fyfe, C., Corchado, E.: Maximum Likelihood Hebbian Rules. In: European Symposium on Artificial Neural Networks, ESANN (2002)

    Google Scholar 

  12. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8, 203–225 (2004)

    Article  MathSciNet  Google Scholar 

  13. Kraaijveld, M.A., Mao, J., Jain, A.K.: A Nonlinear Projection Method Based on Kohonen’s Topology Preserving Maps. IEEE Transactions on Neural Networks 6, 548–559 (1995)

    Article  Google Scholar 

  14. Heskes, T.: Balancing between Bagging and Bumping. In: Advances in Neural Information Processing Systems, vol. 9, Proceedings of the 1996 Conference, pp. 466–472 (1997)

    Google Scholar 

  15. Ruta, D., Gabrys, B.: A Theoretical Analysis of the Limits of Majority Voting Errors for Multiple Classifier Systems. Pattern Analysis and Applications 5, 333–350 (2002)

    Article  MathSciNet  Google Scholar 

  16. Petrakieva, L., Fyfe, C.: Bagging and Bumping Self Organising Maps. Computing and Information Systems (2003)

    Google Scholar 

  17. Corchado, E.S., Baruque, B., Gabrys, B.: Maximum Likelihood Topology Preserving Ensembles. In: Corchado, E.S., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1434–1442. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Georgakis, A., Li, H., Gordan, M.: An Ensemble of Som Networks for Document Organization and Retrieval. In: Int. Conf. on Adaptive Knowledge Representation and Reasoning (AKRR’05), p. 6 (2005)

    Google Scholar 

  19. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: Uci Repository of Machine Learning Databases. University of California, Irvine, Dept. of Information and Computer Sciences (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baruque, B., Corchado, E., Yin, H. (2007). ViSOM Ensembles for Visualization and Classification. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics