Nothing Special   »   [go: up one dir, main page]

Skip to main content

Two Pages Graph Layout Via Recurrent Multivalued Neural Networks

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

  • 2302 Accesses

Abstract

In this work, we propose the use of two neural models performing jointly in order to minimize the same energy function. This model is focused on obtaining good solutions for the two pages book crossing problem, although some others problems can be efficiently solved by the same model. The neural technique applied to this problem allows to reduce the energy function by changing outputs from both networks –outputs of first network representing location of nodes in the nodes line, while the outputs of the second one meaning the half-plane where the edges are drawn.

Detailed description of the model is presented, and the technique to minimize an energy function is fully described. It has proved to be a very competitive and efficient algorithm, in terms of quality of solutions and computational time, when compared to the state-of-the-art methods. Some simulation results are presented in this paper, to show the comparative efficiency of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chinn, P.Z., Chvátalová, L., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and matrices – a survey. J. Graph Theory 6, 223–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kainen, P.C.: The book thickness of a graph, ii. Congr. Numer. 71, 127–132 (1990)

    MathSciNet  Google Scholar 

  3. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with applications to vlsi design. SIAM J. Alg. Disc. Meth. 8, 33–58 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Malitz, S.M.: On the page number of graphs. J. Algorithms 17, 71–84 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Los Alamitos (1984)

    MATH  Google Scholar 

  6. Raghavan, R., Sahni, S.: Single row routing. IEEE Trans. Comput. C-32, 209–220 (1983)

    Article  Google Scholar 

  7. Sinden, F.W.: Topology of thin films circuit. Bell Syst. Tech. Jour. XLV, 1639–1666 (1966)

    Google Scholar 

  8. Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man. Cybern. 18, 61–79 (1988)

    Article  Google Scholar 

  9. Cimikowski, R.: Algorithms for the fixed linear crossing number problem. Discrete Applied Mathematics 122, 93 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nicholson, T.A.J.: Permutation procedure for minimising the number of crossings in a network. Proc. IEE 115, 21–26 (1968)

    MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Crossing number is np-complete. SIAM J. Alg. Disc. Methods 4, 312–316 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in linear embeddings of graphs. IEEE Trans. Comput. 39, 124–127 (1990)

    Article  MathSciNet  Google Scholar 

  13. Cimikowski, R., Shope, P.: A neural-network algorithm for a graph layout problem. IEEE Transactions on Neural Networks 7, 341–345 (1996)

    Article  Google Scholar 

  14. Takefuji, Y.: Design of parallel distributed cauchy machines. In: Proc. Int. Joint Conf. Neural Networks, pp. 529–536 (1989)

    Google Scholar 

  15. Takefuji, Y.: Neural Network Parallel Computing. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  16. Mérida-Casermeiro, E., Galán-Marín, G., Muñoz Pérez, J.: An efficient multivalued hopfield network for the travelling salesman problem. Neural Processing Letters 14, 203–216 (2001)

    Article  MATH  Google Scholar 

  17. Mérida-Casermeiro, E., Muñoz Pérez, J., Domínguez-Merino, E.: An n-parallel multivalued network: Applications to the travelling salesman problem. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 406–413. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Mérida-Casermeiro, E., López-Rodríguez, D.: Graph partitioning via recurrent multivalued neural networks. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 1149–1156. Springer, Heidelberg (2005)

    Google Scholar 

  19. López-Rodríguez, D., Mérida-Casermeiro, E., Ortiz-de-Lazcano-Lobato, J.M., López-Rubio, E.: Image Compression by Vector Quantization with Recurrent Discrete Networks. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 595–605. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López-Rodríguez, D., Mérida-Casermeiro, E., Ortíz-de-Lazcano-Lobato, J.M., Galán-Marín, G. (2007). Two Pages Graph Layout Via Recurrent Multivalued Neural Networks. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics