Nothing Special   »   [go: up one dir, main page]

Skip to main content

Building Automated Negotiation Strategies Enhanced by MLP and GR Neural Networks for Opponent Agent Behaviour Prognosis

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

  • 2343 Accesses

Abstract

A quite challenging research field in the artificial intelligence domain is the design and evaluation of agents handling automated negotiations on behalf of their human or corporate owners. This paper aims to enhance such agents with techniques enabling them to predict their opponents’ negotiation behaviour and thus achieve more profitable results and better resource utilization. The proposed learning techniques are based on MLP and GR neural networks (NNs) that are used mainly to detect at an early stage the cases where agreements are not achievable, supporting the decision of the agents to withdraw or not from the specific negotiation thread. The designed NN-assisted negotiation strategies have been evaluated via extensive experiments and are proven to be very useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kraus, S.: Automated Negotiation and Decision Making in Multiagent Environments. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, pp. 150–172. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Lomuscio, A., Wooldridge, M.J., Jennings, N.R.: A Classification Scheme for Negotiation in Electronic Commerce. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 19–33. Springer, Heidelberg (2001)

    Google Scholar 

  3. Faratin, P., Sierra, C., Jennings, N.J.: Negotiation Decision Functions for Autonomous Agents. Int. J. of Robotics and Autonomous Systems 24(3-4), 159–182 (1998)

    Article  Google Scholar 

  4. Rosenschein, J., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation among Computers. MIT Press, MA (1994)

    Google Scholar 

  5. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., Wooldridge, M.: Automated Negotiation: Prospects, Methods, and Challenges. Int. J. of Group Decision and Negotiation 10(2), 199–215 (2001)

    Article  Google Scholar 

  6. Lai, G., Li, C., Sycara, K., Giampapa, K.: Literature Review on Multi-attribute Negotiations. Technical Report CMU-RI-TR-04-66, Robotics Institute, Carnegie Mellon University, Pittsburgh, USA (2004)

    Google Scholar 

  7. Muller, H.: Negotiation principles. In: O’Hare, G., Jennings, N. (eds.) Foundations of Distributed Artificial Intelligence, pp. 211–229. John Wiley and Sons, New York (1996)

    Google Scholar 

  8. Skylogiannis, T., Antoniou, G., Skylogiannis, N., Governatori, G.: DR-NEGOTIATE - A System for Automated Agent Negotiation with Defeasible Logic-Based Strategies. In: IEEE Int. Conf. on e-Technology, e-Commerce and e-Service (EEE’05), Hong Kong China (2005)

    Google Scholar 

  9. Osborne, M., Rubinstein, A.: A course in game theory. MIT Press, Cambridge (1994)

    Google Scholar 

  10. Kraus, S.: Strategic Negotiation in Multiagent Environments. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  11. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, London (1999)

    MATH  Google Scholar 

  12. Caudill, M., Butler, C.: Understanding Neural Networks: Computer Explorations, vol. 1-2, 1st edn. MIT Press, Cambridge (1992)

    Google Scholar 

  13. Hagan, M., Demuth, H., Beale, M.: Neural Network Design. PWS Publishing Company, Boston (1996)

    Google Scholar 

  14. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing, vol. 1, MIT Press, Cambridge (1986)

    Google Scholar 

  15. Duch, W., Jankowski, N.: Survey of Neural Transfer Functions. Neural Computing Surveys 2, 163–212 (1999)

    Google Scholar 

  16. Wasserman, P.D.: Advanced Methods in Neural Computing. John Wiley and Sons, New York (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roussaki, I., Papaioannou, I., Anangostou, M. (2007). Building Automated Negotiation Strategies Enhanced by MLP and GR Neural Networks for Opponent Agent Behaviour Prognosis. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics