Abstract
The Mixture of Probabilistic Principal Components Analyzers (MPPCA) is a multivariate analysis technique which defines a Gaussian probabilistic model at each unit. The number of units and principal directions in each unit is not learned in the original approach. Variational Bayesian approaches have been proposed for this purpose, which rely on assumptions on the input distribution and/or approximations of certain statistics. Here we present a different way to solve this problem, where cross-validation is used to guide the search for an optimal model selection. This allows to learn the model architecture without the need of any assumptions other than those of the basic PPCA framework. Experimental results are presented, which show the probability density estimation capabilities of the proposal with high dimensional data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beal, M.J.: Software in Matlab. Available at: http://www.cse.buffalo.edu/faculty/mbeal/software.html
Besse, P.: PCA stability and choice of dimensionality. Statistics and Probability Letters 13(5), 405–410 (1992)
Burden, R.L., Faires, D.: Numerical Analysis. Brooks/Cole Publishing, Pacific Grove (2004)
Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)
Ghahramani, Z., Beal, M.J.: Variational Inference for Bayesian Mixtures of Factor Analysers. Advances in Neural Information Processing Systems 12, 449–455 (1999)
Kwon, O.-W., Chan, K., Lee, T.-W.: Speech Feature Analysis Using Variational Bayesian PCA. IEEE Signal Processing Letters 10(5), 137–140 (2003)
LeCun, Y., Cortes, C.: The MNIST Database of Handwritten Digits. In: Internet (November 2006), http://yann.lecun.com/exdb/mnist/
Oba, S., Sato, M., Ishii, S.: Prior Hyperparameters in Bayesian PCA. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 271–279. Springer, Heidelberg (2003)
Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principal Components Analyzers. Neural Computation 11, 443–482 (1999)
VizieR service (March 29, 2004), Available at: http://vizier.cfa.harvard.edu/viz-bin/VizieR
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
López-Rubio, E., Ortiz-de-Lazcano-Lobato, J.M., López-Rodríguez, D., del Carmen Vargas-González, M. (2007). Automatic Model Selection for Probabilistic PCA. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-73007-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73006-4
Online ISBN: 978-3-540-73007-1
eBook Packages: Computer ScienceComputer Science (R0)