Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Model Selection for Probabilistic PCA

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Abstract

The Mixture of Probabilistic Principal Components Analyzers (MPPCA) is a multivariate analysis technique which defines a Gaussian probabilistic model at each unit. The number of units and principal directions in each unit is not learned in the original approach. Variational Bayesian approaches have been proposed for this purpose, which rely on assumptions on the input distribution and/or approximations of certain statistics. Here we present a different way to solve this problem, where cross-validation is used to guide the search for an optimal model selection. This allows to learn the model architecture without the need of any assumptions other than those of the basic PPCA framework. Experimental results are presented, which show the probability density estimation capabilities of the proposal with high dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beal, M.J.: Software in Matlab. Available at: http://www.cse.buffalo.edu/faculty/mbeal/software.html

  2. Besse, P.: PCA stability and choice of dimensionality. Statistics and Probability Letters 13(5), 405–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burden, R.L., Faires, D.: Numerical Analysis. Brooks/Cole Publishing, Pacific Grove (2004)

    Google Scholar 

  4. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  5. Ghahramani, Z., Beal, M.J.: Variational Inference for Bayesian Mixtures of Factor Analysers. Advances in Neural Information Processing Systems 12, 449–455 (1999)

    Google Scholar 

  6. Kwon, O.-W., Chan, K., Lee, T.-W.: Speech Feature Analysis Using Variational Bayesian PCA. IEEE Signal Processing Letters 10(5), 137–140 (2003)

    Article  Google Scholar 

  7. LeCun, Y., Cortes, C.: The MNIST Database of Handwritten Digits. In: Internet (November 2006), http://yann.lecun.com/exdb/mnist/

  8. Oba, S., Sato, M., Ishii, S.: Prior Hyperparameters in Bayesian PCA. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 271–279. Springer, Heidelberg (2003)

    Google Scholar 

  9. Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principal Components Analyzers. Neural Computation 11, 443–482 (1999)

    Article  Google Scholar 

  10. VizieR service (March 29, 2004), Available at: http://vizier.cfa.harvard.edu/viz-bin/VizieR

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López-Rubio, E., Ortiz-de-Lazcano-Lobato, J.M., López-Rodríguez, D., del Carmen Vargas-González, M. (2007). Automatic Model Selection for Probabilistic PCA. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics