Abstract
This paper reviews one nonlinear and two linear projection architectures, in the context of a comparative study, which are used as either alternative or complementary tools in the identification and analysis of anomalous situations by Intrusion Detection Systems (IDSs). Three neural projection models are empirically compared, using real traffic data sets in an IDS framework. The specific multivariate data analysis techniques that drive these models are able to identify different factors or components by studying higher order statistics - variance and kurtosis - in order to display the most interesting projections or dimensions. Our research describes how a network manager is able to diagnose anomalous behaviour in data traffic through visual projection of network traffic. We also emphasize the importance of the time-dependent variable in the application of these projection methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Friedman, J.H., Tukey, J.W.: A Projection Pursuit Algorithm for Exploratory Data-Analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)
Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 2(6), 559–572 (1901)
Hotelling, H.: Analysis of a Complex of Statistical Variables Into Principal Components. Journal of Education Psychology 24, 417–444 (1933)
Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8(3), 203–225 (2004)
Zanero, S.: Analyzing TCP Traffic Patterns Using Self Organizing Maps. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 83–90. Springer, Heidelberg (2005)
Sarasamma, S.T., Zhu, Q.M.A., Huff, J.: Hierarchical Kohonenen Net for Anomaly Detection in Network Security. IEEE Transactions on Systems Man and Cybernetics 35(2), 302–312 (2005)
Carpinteiro, O.A.S., Netto, R.S., Lima, I., de Souza, A.C.Z., Moreira, E.M., Pinheiro, C.A.M.: A Neural Model in Intrusion Detection Systems. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 856–862. Springer, Heidelberg (2006)
Zhang, C.L., Jiang, J., Kamel, M.: Intrusion Detection Using Hierarchical Neural Networks. Pattern Recognition Letters 26(6), 779–791 (2005)
Debar, H., Becker, M., Siboni, D.: A Neural Network Component for an Intrusion Detection System. In: Proc. of the 1992 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 240–250 (1992)
Ryan, J., Lin, M.J., Miikkulainen, R.: Intrusion Detection with Neural Networks. In: Advances in Neural Information Processing Systems (NIPS’97), vol. 10, pp. 943–949. The MIT Press, Cambridge (1998)
Fyfe, C.: PCA Properties of Interneurons: from Neurobiology to Real World Computing. In: Proc. of the Int. Conf. on Artificial Neural Networks, ICANN 1993, pp. 183–188. Springer, Heidelberg (1993)
Oja, E.: A Simplified Neuron Model as a Principal Component Analyzer. Journal of Mathematical Biology 15(3), 267–273 (1982)
Fyfe, C., Corchado, E.: Maximum Likelihood Hebbian Rules. In: Proc. of the 10th European Symposium on Artificial Neural Networks (ESANN 2002), pp. 143–148 (2002)
Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. Int. Journal of Pattern Recognition and Artificial Intelligence 17(8), 1447–1466 (2003)
Corchado, E., Han, Y., Fyfe, C.: Structuring Global Responses of Local Filters Using Lateral Connections. Journal of Experimental & Theoretical Artificial Intelligence 15(4), 473–487 (2003)
Seung, H.S., Socci, N.D., Lee, D.: The Rectified Gaussian Distribution. Advances in Neural Information Processing Systems 10, 350–356 (1998)
Kramer, M.A.: Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. Aiche Journal 37(2), 233–243 (1991)
Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing. MIT Press, Cambridge (1986)
Hornik, K., Stinchcombe, M., White, H.: Multilayer Feedforward Networks Are Universal Approximators. Neural Networks 2(5), 359–366 (1989)
Cybenko, G.: Approximations by Superpositions of Sigmoidal Functions. Mathematics of Control, Signal and Systems 2(4), 303–314 (1989)
Herrero, Á., Corchado, E.S., Sáiz, J.M.: MOVICAB-IDS: Visual Analysis of Network Traffic Data Streams for Intrusion Detection. In: Corchado, E.S., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1424–1433. Springer, Heidelberg (2006)
Corchado, E.S., Herrero, Á., Sáiz, J.M.: Detecting Compounded Anomalous SNMP Situations Using Cooperative Unsupervised Pattern Recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 905–910. Springer, Heidelberg (2005)
Cisco Secure Consulting. Vulnerability Statistics Report (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Herrero, Á., Corchado, E., Gastaldo, P., Zunino, R. (2007). A Comparison of Neural Projection Techniques Applied to Intrusion Detection Systems. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_138
Download citation
DOI: https://doi.org/10.1007/978-3-540-73007-1_138
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73006-4
Online ISBN: 978-3-540-73007-1
eBook Packages: Computer ScienceComputer Science (R0)