Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Handling a Large Number of Objectives A Posteriori and During Optimization

  • Chapter
Multiobjective Problem Solving from Nature

Part of the book series: Natural Computing Series ((NCS))

Summary

Dimensionality reduction methods are used routinely in statistics, pattern recognition, data mining, and machine learning to cope with high-dimensional spaces. Also in the case of high-dimensional multiobjective optimization problems, a reduction of the objective space can be beneficial both for search and decision making. New questions arise in this context, e.g., how to select a subset of objectives while preserving most of the problem structure. In this chapter, two different approaches to the task of objective reduction are developed, one based on assessing explicit conflicts, the other based on principal component analysis (PCA). Although both methods use different principles and preserve different properties of the underlying optimization problems, they can be effectively utilized either in an a posteriori scenario or during search. Here, we demonstrate the usability of the conflict-based approach in a decision-making scenario after the search and show how the principal-component-based approach can be integrated into an evolutionary multicriterion optimization (EMO) procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The Journal of Machine Learning Research: Special Issue on Variable and Feature Selection. MIT Press, 2003.

    Google Scholar 

  2. P. J. Agrell. On redundancy in multi criteria decision making. European Journal of Operational Research, 98(3):571–586, 1997.

    Article  Google Scholar 

  3. N. Beume and G. Rudolph. Faster S-Metric Calculation by Considering Dominated Hypervolume as Klee’s Measure Problem. Technical Report CI-216/06, Sonderforschungsbereich 531 Computational Intelligence, Universitát Dortmund, July 2006.

    Google Scholar 

  4. D. Brockhoff and E. Zitzler. Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization. In Parallel Problem Solving from Nature (PPSN-IX), volume 4193 of LNCS, pages 533–542. Springer, 2006. ISBN 3-540-38990-3.

    Google Scholar 

  5. D. Brockhoff and E. Zitzler. Dimensionality Reduction in Multiobjective Optimization with (Partial) Dominance Structure Preservation: Generalized Minimum Objective Subset Problems. TIK Report 247, Institut für Technische Informatik und Kommunikationsnetze, ETH Zürich, April 2006.

    Google Scholar 

  6. D. Brockhoff and E. Zitzler. Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem. In Proceedings of the Operations Research 2006 conference, 2007. to appear.

    Google Scholar 

  7. D. Brockhoff and E. Zitzler. Offline and Online Objective Reduction in Evolutionary Multiobjective Optimization Based on Objective Conflicts. TIK Report 269, Institut fúr Technische Informatik und Kommunikationsnetze, ETH Zúrich, Apr. 2007.

    Google Scholar 

  8. M. Charikar, V. Guruswami, R. Kumar, S. Rajagopalan, and A. Sahai. Combinatorial feature selection problems. In IEEE Symposium on Foundations of Computer Science, pages 631–640, 2000. URL citeseer.ist.psu.edu/376451.html.

    Google Scholar 

  9. C. Coello Coello and A. Hernández Aguirre. Design of Combinational Logic Circuits through an Evolutionary Multiobjective Optimization Approach. Artificial Intelligence for Engineering, Design, Analysis and Manufacture, 16 (1): 39–53, 2002.

    Article  Google Scholar 

  10. C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York, 2002.

    Google Scholar 

  11. J. J. Dai, L. Lieu, and D. Rocke. Dimension Reduction for Classification with Gene Expression Microarray Data. Statistical Applications in Genetics and Molecular Biology, 5 (1), 2006.

    Google Scholar 

  12. M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1 (3): 131–156, 1997.

    Article  Google Scholar 

  13. K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, Chichester, UK, 2001.

    MATH  Google Scholar 

  14. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature (PPSN-VI), pages 849–858, 2000.

    Google Scholar 

  15. K. Deb and D. Saxena. Searching For Pareto-Optimal Solutions Through Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems. In IEEE Congress on Evolutionary Computation (CEC 2006), pages 3352–3360, 2006.

    Google Scholar 

  16. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for Evolutionary Multi-Objective Optimization. In A. Abraham, R. Jain, and R. Goldberg, editors, Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pages 105–145. Springer, 2005. ISBN 1-85233-787-7.

    Google Scholar 

  17. M. Ehrgott and S. Nickel. On the number of criteria needed to decide Pareto-optimality. Mathematical Methods of Operations Research, 55(3): 329–345, 2002.

    Article  MathSciNet  Google Scholar 

  18. M. Emmerich, N. Beume, and B. Naujoks. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In Evolutionary Multi-Criterion Optimization (EMO 2005), volume 3410 of LNCS, pages 62–76. Springer, 2005.

    Google Scholar 

  19. C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator. In IEEE Congress on Evolutionary Computation (CEC 2006), pages 1157–1163, 2006.

    Google Scholar 

  20. T. Gal and T. Hanne. Consequences of dropping nonessential objectives for the application of MCDM methods. European Journal of Operational Research, 119: 373–378, 1999.

    Article  Google Scholar 

  21. T. Gal and H. Leberling. Redundant objective functions in linear vector maximum problems and their determination. European Journal of Operational Research, 1 (3): 176–184, 1977.

    Article  MathSciNet  Google Scholar 

  22. T. Goel, R. Vaidyanathan, R. T. Haftka, N. Queipo, W. Shyy, and K. Tucker. Response surface approximation of Pareto-optimal front in multi-objective optimization. Technical report, Department of Mechanical and Aerospace Engineering, University of Florida, USA, 2004.

    MATH  Google Scholar 

  23. E. J. Hughes. Radar Waveform Optimization as a Many-Objective Application Benchmark. In Evolutionary Multi-Criterion Optimization (EMO 2007), volume 4403 of LNCS, pages 700–714, 2007.

    Google Scholar 

  24. A. Hyvárinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, 2001.

    Google Scholar 

  25. I. T. Jolliffe. Principal component analysis. Springer, 2002. ISBN 0-387-95442-2.

    Google Scholar 

  26. P. Langley. Selection of relevant features in machine learning. In Proceedings of the AAAI Fall Symposium on Relevance, pages 140–144, 1994.

    Google Scholar 

  27. H. Liu and H. Motoda, editors. Feature Extraction, Construction and Selection: A Data Mining Perspective. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

    Book  Google Scholar 

  28. B. Paechter, R. C. Rankin, A. Cumming, and T. C. Fogarty. Timetabling the Classes of an Entire University with an Evolutionary Algorithm. In Parallel Problem Solving From Nature (PPSN-V), pages 865–874. Springer, 1998.

    Google Scholar 

  29. R. C. Purshouse and P. J. Fleming. Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation. In Evolutionary Multi-Criterion Optimization (EMO 2003), volume 2632 of LNCS, pages 16–30. Springer, 2003.

    Google Scholar 

  30. D. K. Saxena and K. Deb. Non-linear Dimensionality Reduction Procedures for Certain Large-Dimensional Multi-Objective Optimization Problems: Employing Correntropy and a Novel Maximum Variance Unfolding. In Evolutionary Multi-criterion Optimization (EMO 2007), 2007.

    Google Scholar 

  31. K. C. Tan, E. F. Khor, and T. H. Lee. Multiobjective Evolutionary Algorithms and Applications. Springer, London, UK, 2005.

    MATH  Google Scholar 

  32. H. Vafaie and K. De Jong. Robust feature selection algorithms. In Tools with Artificial Intelligence (TAI ’93), pages 356–363, 1993.

    Google Scholar 

  33. T. Wagner, N. Beume, and B. Naujoks. Pareto-, Aggregation-, and Indicator-based Methods in Many-objective Optimization. In Evolutionary Multi-Criterion Optimization (EMO 2007), volume 4403 of LNCS, pages 742–756. Springer, 2007.

    Google Scholar 

  34. L. While. A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume. In Evolutionary Multi-Criterion Optimization (EMO 2005), volume 3410 of LNCS, pages 326–340. Springer, 2005.

    Google Scholar 

  35. L. While, L. Bradstreet, L. Barone, and P. Hingston. Heuristics for Optimising the Calculation of Hypervolume for Multi-objective Optimisation Problems. In IEEE Congress on Evolutionary Computation (CEC 2005), pages 2225–2232, 2005.

    Google Scholar 

  36. E. Zitzler and S. Künzli. Indicator-Based Selection in Multiobjective Search. In Parallel Problem Solving from Nature (PPSN-VIII), September 2004.

    Google Scholar 

  37. E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, and V. Grunert da Fonseca. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7 (2): 117–132, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockhoff, D., Saxena, D.K., Deb, K., Zitzler, E. (2008). On Handling a Large Number of Objectives A Posteriori and During Optimization. In: Knowles, J., Corne, D., Deb, K. (eds) Multiobjective Problem Solving from Nature. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72964-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72964-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72963-1

  • Online ISBN: 978-3-540-72964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics