Nothing Special   »   [go: up one dir, main page]

Skip to main content

Perceptually-Based Functions for Coarseness Textural Feature Representation

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4477))

Included in the following conference series:

Abstract

Coarseness is a very important textural concept that has been widely analyzed in computer vision for years. However, a model which allows to represent different perception degrees of this textural concept in the same way that humans perceive texture is needed. In this paper we propose a model that associates computational measures to human perception by learning an appropriate function. To do it, different measures representative of coarseness are chosen and subjects assessments are collected and aggregated. Finally, a function that relates these data is fitted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbadeni, N., Ziou, N., Wang, D.: Autocovariance-based perceptual textural features corresponding to human visual perception. In: Proc. of 15th International Conference on Pattern Recognition, vol. 3, pp. 901–904 (2000)

    Google Scholar 

  2. Haralick, R.: Statistical and structural approaches to texture. Proceedings IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  3. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. on Systems, Man and Cybernetics 8, 460–473 (1978)

    Article  Google Scholar 

  4. Fahmy, G., Black, J., Panchanathan, S.: Texture characterization for joint compression and classification based on human perception in the wavelet domain. IEEE Transactions on Image Processing (2006)

    Google Scholar 

  5. Manian, V., Vasquez, R.: Texture discrimination based on neural dynamics of visual perception. In: Proc. International Joint Conference on Neural Networks., vol. 1, pp. 113–118 (2003)

    Google Scholar 

  6. Chen, J., Pappas, T., Mojsilovic, A., Rogowitz, B.: Adaptive perceptual color-texture image segmentation. IEEE Transactions on Image Processing (2005)

    Google Scholar 

  7. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. on SMC 18(1), 183–190 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Peleg, S., Naor, J., Hartley, R., Avnir, D.: Multiple resolution texture analysis and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(4), 518–523 (1984)

    Google Scholar 

  9. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  10. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Transactions on Systems, Man and Cybernetics 19(5), 1264–1274 (1989)

    Article  Google Scholar 

  11. Sun, C., Wee, W.: Neighboring gray level dependence matrix for texture classification. Computer Vision, Graphics and Image Processing 23, 341–352 (1983)

    Article  Google Scholar 

  12. Weszka, J., Dyer, C., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Trans. on SMC 6, 269–285 (1976)

    MATH  Google Scholar 

  13. Newsam, S., Kammath, C.: Retrieval using texture features in high resolution multi-spectral satellite imagery. In: Data Mining and Knowledge Discovery: Theory, Tools, and Technology VI, SPIE Defense and Security (2004)

    Google Scholar 

  14. Wu, C., Chen, Y.: Statistical feature matrix for texture analysis. CVGIP: Graphical Models and Image Processing 54(5), 407–419 (1992)

    Article  Google Scholar 

  15. Galloway, M.: Texture analysis using gray level run lengths. Computer Graphics and Image Processing 4, 172–179 (1975)

    Article  Google Scholar 

  16. Kim, S., Choi, K., Lee, D.: Texture classification using run difference matrix. In: Proc. of IEEE 1991 Ultrasonics Symposium, vol. 2, pp. 1097–1100 (1991)

    Google Scholar 

  17. Yoshida, H., Casalino, D., Keserci, B., Coskun, A., Ozturk, O., Savranlar, A.: Wavelet-packet-based texture analysis for differentiation between benign and malignant liver tumours in ultrasound images. Physics in Medicine and Biology 48, 3735–3753 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chamorro-Martínez, J., Galán-Perales, E., Prados-Suárez, B., Soto-Hidalgo, J.M. (2007). Perceptually-Based Functions for Coarseness Textural Feature Representation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72847-4_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72846-7

  • Online ISBN: 978-3-540-72847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics