Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Learning of Conceptual Knowledge in Image Sequences for Human Behavior Interpretation

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4477))

Included in the following conference series:

Abstract

This work describes an approach for the interpretation and explanation of human behavior in image sequences, within the context of a Cognitive Vision System. The information source is the geometrical data obtained by applying tracking algorithms to an image sequence, which is used to generate conceptual data. The spatial characteristics of the scene are automatically extracted from the resuling tracking trajectories obtained during a training period. Interpretation is achieved by means of a rule-based inference engine called Fuzzy Metric Temporal Horn Logic and a behavior modeling tool called Situation Graph Tree. These tools are used to generate conceptual descriptions which semantically describe observed behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buxton, H.: Learning and understanding dynamic scene activity: A review. Image and Vision Computing 21(1), 125–136 (2002)

    Article  Google Scholar 

  2. Fernyhough, J., Cohn, A., Hogg, D.: Constructing qualitative event models automatically from video input. Image and Vision Computing 18, 81–103 (2000)

    Article  Google Scholar 

  3. Galata, A., Johnson, N., Hogg, D.: Learning variable-length markov models of behavior. Computer Vision and Image Understanding 81(3), 398–413 (2001)

    Article  MATH  Google Scholar 

  4. Haag, M., Nagel, H.-H.: Incremental recognition of traffic situations from video image sequences. Image and Vision Computing 18(2), 137–153 (2000)

    Article  Google Scholar 

  5. Horprasert, T., Harwood, D., Davis, L.: A Robust Background Subtraction and Shadow Detection. In: 4th ACCV, Taipei, Taiwan, vol. 1, pp. 983–988 (2000)

    Google Scholar 

  6. Intille, S.S., Bobick, A.F.: Recognized planned, multiperson action. International Journal of Computer Vision 81(3), 414–445 (2001)

    MATH  Google Scholar 

  7. Kojima, A., Tamura, T., Fukunaga, K.: Natural language description of human activities from video images based on concept hierarchy of actions. International Journal of Computer Vision 50(2), 171–184 (2002)

    Article  MATH  Google Scholar 

  8. Morris, R.J., Hogg, D.C.: Statistical models of object interaction. International Journal of Computer Vision 37(2), 209–215 (2000)

    Article  MATH  Google Scholar 

  9. Nagel, H.-H.: From image sequences towards conceptual descriptions. Image and Vision Computing 6(2), 59–74 (1988)

    Article  Google Scholar 

  10. Remagnino, P., Tan, T., Baker, K.: Agent oriented annotation in model based visual surveillance. In: Proceedings of International Conference on Computer Vision (ICCV’98), Mumbai, India, pp. 857–862 (1998)

    Google Scholar 

  11. Rowe, D., Rius, I., González, J., Villanueva, J.J.: Improving tracking by handling occlusions. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 384–393. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Schäfer, K.: Fuzzy spatio-temporal logic programming. In: Brzoska, C. (ed.) Proceedings of 7th Workshop in Temporal and Non-Classical Logics – IJCAI’97, Nagoya, Japan, pp. 23–28 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Baiget, P., Fernández, C., Roca, X., Gonzàlez, J. (2007). Automatic Learning of Conceptual Knowledge in Image Sequences for Human Behavior Interpretation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72847-4_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72846-7

  • Online ISBN: 978-3-540-72847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics