Nothing Special   »   [go: up one dir, main page]

Skip to main content

Experimental Evaluation of Parametric Max-Flow Algorithms

  • Conference paper
Experimental Algorithms (WEA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4525))

Included in the following conference series:

Abstract

The parametric maximum flow problem is an extension of the classical maximum flow problem in which the capacities of certain arcs are not fixed but are functions of a single parameter. Gallo et al. [6] showed that certain versions of the push-relabel algorithm for ordinary maximum flow can be extended to the parametric problem while only increasing the worst-case time bound by a constant factor. Recently Zhang et al. [14,13] proposed a novel, simple balancing algorithm for the parametric problem on bipartite networks. They claimed good performance for their algorithm on networks arising from a real-world application. We describe the results of an experimental study comparing the performance of the balancing algorithm, the GGT algorithm, and a simplified version of the GGT algorithm, on networks related to those of the application of Zhang et al. as well as networks designed to be hard for the balancing algorithm. Our implementation of the balancing algorithm beats both versions of the GGT algorithm on networks related to the application, thus supporting the observations of Zhang et al. On the other hand, the GGT algorithm is more robust; it beats the balancing algorithm on some natural networks, and by asymptotically increasing amount on networks designed to be hard for the balancing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahuja, R.K., Orlin, J.B., Stein, C., Tarjan, R.E.: Improved algorithms for bipartite network flow. SIAM Journal on Computing 23(5), 906–933 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Babenko, M.A., Goldberg, A.V.: Experimental evaluation of a parametric flow algorithm. Technical report, Microsoft Research (2006)

    Google Scholar 

  • Balinski, M.L.: On a selection problem. Management Science 17(3), 230–231 (1970)

    MathSciNet  MATH  Google Scholar 

  • Cherkassky, B.V., Goldberg, A.V.: On Implementing Push-Relabel Method for the Maximum Flow Problem. Algorithmica 19, 390–410 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Eisner, M.J., Severance, D.G.: Mathematical techniques for efficient record segmentation in large shared databases. J. ACM 23(4), 619–635 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Hochbaum, D.S.: The Pseudoflow Algorithm and the Pseudoflow-Based Simplex for the Maximum Flow Problem. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 1412, pp. 325–337. Springer, Heidelberg (1998)

    Google Scholar 

  • King, V., Rao, S., Tarjan, R.: A Faster Deterministic Maximum Flow Algorithm. J. Algorithms 17, 447–474 (1994)

    Article  MathSciNet  Google Scholar 

  • Mamer, J., Smith, S.: Optimizing field repair kits based on job completion rate. Management Science 28(11), 1328–1333 (1982)

    MATH  Google Scholar 

  • Rhys, J.M.W.: A selection problem of shared fixed costs and network flows. Management Science 17(3), 200–207 (1970)

    Article  MATH  Google Scholar 

  • Tarjan, R., Ward, J., Zhang, B., Zhou, Y., Mao, J.: Balancing applied to maximum network flow problems. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 612–623. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Zhang, B., Ward, J., Feng, Q.: Simultaneous parametric maximum flow algorithm with vertex balancing. Technical Report HPL-2005-121, HP Labs (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Camil Demetrescu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Babenko, M., Derryberry, J., Goldberg, A., Tarjan, R., Zhou, Y. (2007). Experimental Evaluation of Parametric Max-Flow Algorithms. In: Demetrescu, C. (eds) Experimental Algorithms. WEA 2007. Lecture Notes in Computer Science, vol 4525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72845-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72845-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72844-3

  • Online ISBN: 978-3-540-72845-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics