Nothing Special   »   [go: up one dir, main page]

Skip to main content

Peer-to-Peer Data Mining, Privacy Issues, and Games

  • Conference paper
Autonomous Intelligent Systems: Multi-Agents and Data Mining (AIS-ADM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4476))

Abstract

Peer-to-Peer (P2P) networks are gaining increasing popularity in many distributed applications such as file-sharing, network storage, web caching, sear- ching and indexing of relevant documents and P2P network-threat analysis. Many of these applications require scalable analysis of data over a P2P network. This paper starts by offering a brief overview of distributed data mining applications and algorithms for P2P environments. Next it discusses some of the privacy concerns with P2P data mining and points out the problems of existing privacy-preserving multi-party data mining techniques. It further points out that most of the nice assumptions of these existing privacy preserving techniques fall apart in real-life applications of privacy-preserving distributed data mining (PPDM). The paper offers a more realistic formulation of the PPDM problem as a multi-party game and points out some recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Privacy preserving data mining. In: Proceedings of the ACM SIGMOD Conference on Management of Data, Dallas, TX, May 2000, pp. 439–450. ACM Press, New York (2000)

    Chapter  Google Scholar 

  2. Awerbuch, B., et al.: Compact distributed data structures for adaptive network routing. In: Proceedings of the 21st ACM Symposium on the Theory of Computing (STOC), ACM Press, New York (1989)

    Google Scholar 

  3. Bawa, M., et al.: The price of validity in dynamic networks. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 515–526 (2004)

    Google Scholar 

  4. Boyd, S., et al.: Gossip algorithms: Design, analysis and applications. In: Proc. IEEE Infocom’05, vol. 3, Miami, March 2005, pp. 1653–1664. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  5. Datta, S., et al.: Distributed data mining in peer-to-peer networks. IEEE Internet Computing special issue on Distributed Data Mining 10(4), 18–26 (2006)

    Google Scholar 

  6. Farrell, J., Rabin, M.: Cheap talk. The Journal of Economic Perspectives 10(3), 103–118 (1996)

    Google Scholar 

  7. Kargupta, H., Das, K., Liu, K.: A game theoretic approach toward multi-party privacy-preserving distributed data mining. In: Communication (2007)

    Google Scholar 

  8. Kempe, D., Dobra, A., Gehrke, J.: Computing aggregate information using gossip. In: Proceedings of the 44th IEEE Symposium on Foundations of Computer Science (FoCS), pp. 482–491. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  9. Kowalczyk, W., Jelasity, M., Eiben, A.: Towards Data Mining in Large and Fully Distributed Peer-To-Peer Overlay Networks. In: Proceedings of BNAIC’03, pp. 203–210 (2003)

    Google Scholar 

  10. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot be Computed Locally! In: Proceedings of the 23rd Symposium on Principles of Distributed Computing (PODC) (2004)

    Google Scholar 

  11. Kutten, S., Peleg, D.: Fault-Local Distributed Mending. In: Proceedings of the 14th Annual ACM Symposium on Principles of Distributed Computing (1995)

    Google Scholar 

  12. Linial, N.: Locality in Distributed Graph Algorithms. SIAM J. Comp. 21, 193–201 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, K., et al.: Client-side web mining for community formation in peer-to-peer environments. SIGKDD Explorations 8(2), 11–20 (2006)

    Article  Google Scholar 

  14. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Transactions on Knowledge and Data Engineering (TKDE) 18(1), 92–106 (2006), http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.14

    Article  Google Scholar 

  15. Mehyar, M., et al.: Distributed averaging on a peer-to-peer network. In: Proceedings of IEEE Conference on Decision and Control, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  16. Naor, M., Stockmeyer, L.: What Can Be Computed Locally? In: Proceedings of the 25th ACM Symposium on Theory of Computing (SToC), pp. 184–193 (1993)

    Google Scholar 

  17. Verykios, V.S., et al.: Association rule hiding. IEEE Transactions on Knowledge and Data Engineering (2003)

    Google Scholar 

  18. Wolff, R., Bhaduri, K., Kargupta, H.: Local L2 thresholding based data mining in peer-to-peer systems. In: Proceedings of SIAM International Conference in Data Mining (SDM), Bethesda, Maryland (2006)

    Google Scholar 

  19. Wolff, R., Schuster, A.: Association Rule Mining in Peer-to-Peer Systems. IEEE Transactions on Systems, Man and Cybernetics, Part B 34(6), 2426–2438 (2004)

    Article  Google Scholar 

  20. Yao, A.C.: How to generate and exchange secrets. In: Proceedings 27th IEEE Symposium on Foundations of Computer Science, 1986, pp. 162–167. IEEE Computer Society Press, Los Alamitos (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vladimir Gorodetsky Chengqi Zhang Victor A. Skormin Longbing Cao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bhaduri, K., Das, K., Kargupta, H. (2007). Peer-to-Peer Data Mining, Privacy Issues, and Games. In: Gorodetsky, V., Zhang, C., Skormin, V.A., Cao, L. (eds) Autonomous Intelligent Systems: Multi-Agents and Data Mining. AIS-ADM 2007. Lecture Notes in Computer Science(), vol 4476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72839-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72839-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72838-2

  • Online ISBN: 978-3-540-72839-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics