Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 41))

  • 2104 Accesses

Abstract

Process Planning activities are significantly based on experience and technical skill. In spite of the great efforts made for planning automation, this activity continues being made in manual form. Process Planning activities are significantly based on experience and technical skills. The advent of the CAM systems (Computer Aided Manufacturing) has partially close the gap left between the Automated Design and Manufacture. Meanwhile, a great dose of manual work still exists and investigation in this area is still necessary. This paper presents the application of a multi objective genetic algorithm for the definition of the optimal cutting parameters. The objective functions consider the production rate and production cost in turning operations. The obtained Pareto front is compared to high efficiency cutting range. This paper also describes one application of the developed mechanism using an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tolouei-Rad, M., Bidhendi, I.M.: On the optimization of machining parameters for milling operations. Int. J. Mach. Tools Manuf. 37(1), 1–16 (1997)

    Article  Google Scholar 

  2. Wang, J., et al.: Optimization of cutting conditions for single pass turning operations using a deterministic approach. International Journal of Machine Tools and Manufacture 42, 1023–1033 (2002)

    Article  Google Scholar 

  3. Armarego, E.J.A., Smith, A.J.R., Wang, J.: Constrained optimization strategies and CAM software for single-pass peripheral milling. Int. J. Prod. Res. 31(9), 2139–2160 (1993)

    Article  Google Scholar 

  4. Taylor, F.W.: On the art of cutting metals. ASME Journal of Engineering for Industry 28, 310–350 (1906)

    Google Scholar 

  5. Hitomi, K.: Analyses of production models, Part 1: The optimal decision of production speeds. AIIE Transactions 8(1), 96–105 (1976)

    MathSciNet  Google Scholar 

  6. Taha, H.: A policy for determining the optimal cycle length for a cutting tool. Journal of Industrial Engineering 17(3), 157–162 (1966)

    Google Scholar 

  7. Wang, Z.G., et al.: Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. International Journal of Machine Tools & Manufacture 45, 1726–1734 (2005)

    Article  Google Scholar 

  8. Quiza Sardinas, R., Rivas, M., Brindis, E.A.: Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence 19(2), 127–133 (2006)

    Article  Google Scholar 

  9. Konak, D., Coit, W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91(9), 992–1007 (2006)

    Article  Google Scholar 

  10. Jones, D.F., Mirrazavi, S.K., Tamiz, M.: Multi-objective metaheuristics: An overview of the current state-of-the-art. European Journal of Operational Research 137(1), 1–9 (2002)

    Article  MATH  Google Scholar 

  11. Al-Aomar, R., Al-Okaily, A.: A GA-based parameter design for single machine turning process with high-volume production. Computers & Industrial Engineering 50, 317–337 (2006)

    Article  Google Scholar 

  12. Kicinger, R., Arciszewski, T., De Jong, K.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures 83, 1943–1978 (2005)

    Article  Google Scholar 

  13. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.: Evolutionary algorithms for solving multi-objective problems. Kluwer Academic, New York (2002)

    MATH  Google Scholar 

  14. Deb, K., et al.: Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., et al. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, Springer, Heidelberg (2000)

    Google Scholar 

  15. Consalter, L.: Arquivo de dados tecnológicos de usinagem para a determinação automática das condições automática das condições de corte em tornos com comando numérico. Msc Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brasil (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Eduardo Gomez Ramírez Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Durán, O., Barrientos, R., Consalter, L.A. (2007). Multi Objective Optimization in Machining Operations. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72432-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72432-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72431-5

  • Online ISBN: 978-3-540-72432-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics