Nothing Special   »   [go: up one dir, main page]

Skip to main content

Driver Fatigue Detection by Fusing Multiple Cues

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4492))

Included in the following conference series:

Abstract

A video-based driver fatigue detection system is presented. The system automatically locates the face in the first frame, and then tracks the eyes in subsequent frames. Four cues which characterises fatigue are used to determine the fatigue level. We used Support Vector Machines to estimate the percentage eye closure, which is the strongest cue. Improved results were achieved by using Support Vector Machines in comparison to Naive Bayes classifier. The performance was further improved by fusing all four cues using fuzzy rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lal, S.K.L., Craig, A.: Driver Fatigue: Electroencephalography and Psychological Assessment. Psychophysiology 39(3), 313–321 (2002)

    Article  Google Scholar 

  2. Ji, Q., Zhu, Z.W., Lan, P.L.: Real-time Nonintrusive Monitoring and Prediction of Driver Fatigue. IEEE Trans. on Vehicular Technology 53(4), 1052–1068 (2004)

    Article  Google Scholar 

  3. Smith, P., Shah, M., Lobo, N.D.: Determining Driver Visual Attention with One Camera. IEEE Trans. on Intelligent Transportation Systems 4(4), 205–218 (2003)

    Article  Google Scholar 

  4. Bergasa, L.M., Nuevo, J., Sotelo, M.A., Barea, R., Lopez, M.E.: Real-time System for Monitoring Driver Vigilance. IEEE Trans. on Intelligent Transportation Systems 7(1), 63–77 (2006)

    Article  Google Scholar 

  5. Hartley, L., Horberry, T., Mabbott, N., Krueger, G.P.: Review of Fatigue Detection and Prediction Technologies. National Road Transport Commision, Melbourne (2000)

    Google Scholar 

  6. Senaratne, R., Halgamuge, S.: Optimised Landmark Model Matching for Face Recognition. In: 7th International Conference on Automatic Face and Gesture Recognition, pp. 120–125 (2006)

    Google Scholar 

  7. Senaratne, R., Halgamuge, S.: Optimal Weighting of Landmarks for Face Recognition. Journal of Multimedia 1(3), 31–41 (2006)

    Article  Google Scholar 

  8. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  9. Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proc. of the IEEE Congress on Evolutionary Computation, pp. 1945–1950 (1999)

    Google Scholar 

  10. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients. IEEE Trans. on Evolutionary Computation 8(3), 240–255 (2004)

    Article  Google Scholar 

  11. Stringa, L.: Eyes Detection for Face Recognition. Applied Artificial Intelligence 7(4), 365–382 (1993)

    Article  Google Scholar 

  12. Baluja, S.: Using Labeled and Unlabeled Data for Probabilistic Modeling of Face Orientation. International Journal of Pattern Recognition and Artificial Intelligence 14(8), 1097–1107 (2000)

    Article  Google Scholar 

  13. Cortes, C., Vapnik, V.: Support-vector Networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  14. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  15. Popieul, J.C., Simon, P., Loslever, P.: Using Driver’s Head Movements Evolution as A Drowsiness Indicator. In: IEEE Intelligent Vehicles Symposium, pp. 616–621 (2003)

    Google Scholar 

  16. Roge, J., Pebayle, T., Muzet, A.: Variations of the Level of Vigilance and of Behavioural Activities during Simulated Automobile Driving. Accident Analysis and Prevention 33(2), 181–186 (2001)

    Article  Google Scholar 

  17. Halgamuge, S.K.: Self-evolving Neural Networks for Rule-based Data Processing. IEEE Trans. on Signal Processing 45(11), 2766–2773 (1997)

    Article  Google Scholar 

  18. Halgamuge, S.K., Poechmueller, W., Glesner, M.: An Alternative Approach for Generation of Membership Functions and Fuzzy Rules based on Radial and Cubic Basis Function Networks. International Journal of Approximate Reasoning 12(3-4), 279–298 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Halgamuge, S.K., Glesner, M.: Fuzzy Neural Networks - Between Functional Equivalence and Applicability. International Journal of Neural Systems 6(2), 185–196 (1995)

    Article  Google Scholar 

  20. Halgamuge, S.K.: A Trainable Transparent Universal Approximator for Defuzzification in Mamdani-type Neuro-fuzzy Controllers. IEEE Trans. on Fuzzy Systems 6(2), 304–314 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Derong Liu Shumin Fei Zengguang Hou Huaguang Zhang Changyin Sun

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Senaratne, R., Hardy, D., Vanderaa, B., Halgamuge, S. (2007). Driver Fatigue Detection by Fusing Multiple Cues. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72393-6_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72393-6_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72392-9

  • Online ISBN: 978-3-540-72393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics