Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Characterization of Strong Equivalence for Logic Programs with Variables

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4483))

Abstract

Two sets of rules are said to be strongly equivalent to each other if replacing one by the other within any logic program preserves the program’s stable models. The familiar characterization of strong equivalence of grounded programs in terms of the propositional logic of here-and-there is extended in this paper to a large class of logic programs with variables. This class includes, in particular, programs with conditional literals and cardinality constraints. The first-order version of the logic of here-and-there required for this purpose involves two additional non-intuitionistic axiom schemas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Dalen, D.: Intuitionistic logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, Volume III: Alternatives in Classical Logic, D. Reidel, Dordrecht (1986)

    Google Scholar 

  2. De Jongh, D., Hendriks, L.: Characterization of strongly equivalent logic programs in intermediate logics. Theory and Practice of Logic Programming 3, 250–270 (2003)

    Article  Google Scholar 

  3. Eiter, T., et al.: Strong and Uniform Equivalence in Answer-Set Programming: Characterizations and Complexity Results for the Non-Ground Case. In: KR 2005, AAAI Press, Menlo Park (2005)

    Google Scholar 

  4. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 372–379 (2007)

    Google Scholar 

  5. Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., et al. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070–1080 (1988)

    Google Scholar 

  7. Hosoi, T.: The axiomatization of the intermediate propositional systems s n of gödel. Journal of the Faculty of Science of the University of Tokyo 13, 183–187 (1996)

    MathSciNet  Google Scholar 

  8. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  9. Lin, F.: Reducing Strong Equivalence of Logic Programs to Entailment in Classical Propositional Logic. In: Proc. KR’02, pp. 170–176 (2002)

    Google Scholar 

  10. Pearce, D.J., Valverde, A.: Towards a First Order Equilibrium Logic for Nonmonotonic Reasoning. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 147–160. Springer, Heidelberg (2004)

    Google Scholar 

  11. Pearce, D., Valverde, A.: A first order nonmonotonic extension of constructive logic. Studia Logica 80, 323–348 (2005)

    Article  MathSciNet  Google Scholar 

  12. Pearce, D., Valverde, A.: Quantified Equilibrium Logic and the First Order Logic of Here-and-There. Technical Report, Univ. Rey Juan Carlos (2006), available at http://www.satd.uma.es/matap/investig/tr/ma06_02.pdf

  13. Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  14. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138, 181–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Chitta Baral Gerhard Brewka John Schlipf

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lifschitz, V., Pearce, D., Valverde, A. (2007). A Characterization of Strong Equivalence for Logic Programs with Variables. In: Baral, C., Brewka, G., Schlipf, J. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2007. Lecture Notes in Computer Science(), vol 4483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72200-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72200-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72199-4

  • Online ISBN: 978-3-540-72200-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics