Nothing Special   »   [go: up one dir, main page]

Skip to main content

Delta: A Toolset for the Structural Analysis of Biological Sequences on a 3D Triangular Lattice

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

Abstract

The lattice approach to biological structural analysis was made popular by the HP model for protein folding, but had not been used previously for RNA secondary structure prediction. We introduce the Delta toolset for the structural analysis of biological sequences on a 3D triangular lattice. The Delta toolset includes a proof-of-concept RNA folding program that is both fast and accurate in predicting the secondary structures with pseudoknots of short RNA sequences.

Supported by Utah State University research funds A13501 and A14766.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrahams, J.P., et al.: Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Research 18(10), 3035–3044 (1990)

    Article  Google Scholar 

  2. Agarwala, R., et al.: Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97), pp. 390–399 (1997)

    Google Scholar 

  3. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104(1-3), 45–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. van Batenburg, F.H.D., Gultyaev, A.P., Pleij, C.W.A.: An APL-programmed genetic algorithm for the prediction of RNA secondary structure. Journal of Theoretical Biology 174(3), 269–280 (1995)

    Article  Google Scholar 

  5. van Batenburg, F.H.D., et al.: Pseudobase: a database with RNA pseudoknots. Nucleic Acids Research 28(1), 201–204 (2000)

    Article  Google Scholar 

  6. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. In: Proceedings of the 2nd Conference on Computational Molecular Biology (RECOMB’98), pp. 30–39 (1998)

    Google Scholar 

  7. Crescenzi, P., et al.: On the complexity of protein folding. In: Proceedings of the 2nd Conference on Computational Molecular Biology (RECOMB’98), pp. 61–62 (1998) and in: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC’98), pp. 597–603 (1998)

    Google Scholar 

  8. Crochemore, M., et al.: Approximating the 2-interval pattern problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 426–437. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Deogun, J.S., et al.: RNA secondary structure prediction with simple pseudoknots. In: Proceedings of the 2nd Asia-Pacific Bioinformatics Conference (APBC’04), pp. 239–246 (2004)

    Google Scholar 

  10. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24(6), 1501–1509 (1985)

    Article  Google Scholar 

  11. Dill, K.A.: Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990)

    Article  Google Scholar 

  12. Eddy, S.R.: How do RNA folding algorithms work? Nature Biotechnology 22(11), 1457–1458 (2004)

    Article  Google Scholar 

  13. Gultyaev, A.P., van Batenburg, F.H.D., Pleij, C.W.A.: The computer simulation of RNA folding pathways using a genetic algorithm. Journal of Molecular Biology 250(1), 37–51 (1995)

    Article  Google Scholar 

  14. Hart, W.E., Istrail, S.: Fast protein folding in the hydrophobic-hydrophilic model within three-eights of optimal. In: Proc. 27th Annual ACM Symposium on Theory of Computing (STOC’95), pp. 157–168 (1995)

    Google Scholar 

  15. Hofacker, I.L., et al.: Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125(2), 167–188 (1994)

    Article  Google Scholar 

  16. Ieong, S., et al.: Predicting RNA secondary structure with arbitrary pseudoknots by maximizing the number of stacking pairs. Journal of Computational Biology 10(6), 981–995 (2003)

    Article  Google Scholar 

  17. Jiang, M.: A 2-approximation for the preceding-and-crossing structured 2-interval pattern problem. Journal of Combinatorial Optimization, Special Issue on Bioinformatics, to appear

    Google Scholar 

  18. Jiang, M.: Improved approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 399–410. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Jiang, M., Zhu, B.: Protein folding on the hexagonal lattice in the HP model. Journal of Bioinformatics and Computational Biology 3(1), 19–34 (2005)

    Article  MathSciNet  Google Scholar 

  20. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  21. Lesh, N., Mitzenmacher, M., Whiteslides, S.: A complete and effective move set for simplified protein folding. In: Proceedings of the 7th Annual International Conference on Computational Molecular Biology (RECOMB’03), pp. 188–195 (2003)

    Google Scholar 

  22. Lyngsø, R.B.: Complexity of pseudoknot prediction in simple models. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004)

    Google Scholar 

  23. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. Journal of Computational Biology 7(3-4), 409–427 (2000)

    Article  Google Scholar 

  24. Lyngsø, R.B., Zuker, M., Pedersen, C.N.S.: Fast evaluation of interval loops in RNA secondary structure prediction. Bioinformatics 15(6), 440–445 (1999)

    Article  Google Scholar 

  25. Mauri, G., Pavesi, G., Piccolboni, A.: Approximation algorithms for protein folding prediction. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), pp. 945–946 (1999)

    Google Scholar 

  26. Newman, A.: A new algorithm for protein folding in the HP model. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pp. 876–884 (2002)

    Google Scholar 

  27. Nussinov, R., et al.: Algorithms for loop matching. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285, 2053–2068 (1999)

    Article  Google Scholar 

  29. Ruan, J., Stormo, G.D., Zhang, W.: An iterated loop matching approach to the prediction of RNA secondary structure with pseudoknots. Bioinformatics 20(1), 58–66 (2004)

    Article  Google Scholar 

  30. Shapiro, B.A., Wu, J.C.: Predicting RNA H-type pseudoknots with the massively parallel genetic algorithm. Computer Applications in the Biosciences 13(4), 459–471 (1997)

    Google Scholar 

  31. Tabaska, J.E., et al.: An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14(8), 691–699 (1998)

    Article  Google Scholar 

  32. Tinoco, I., et al.: Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246, 40–42 (1973)

    Google Scholar 

  33. Uemura, Y., et al.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210(2), 277–303 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vialette, S.: On the computational complexity of 2-interval pattern matching problems. Theoretical Computer Science 312, 223–249 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Waterman, M.S.: Introduction to Computational Biology: Maps, Sequences and Genomes. Chapman and Hall, Boca Raton (1995)

    MATH  Google Scholar 

  36. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, M., Mayne, M., Gillespie, J. (2007). Delta: A Toolset for the Structural Analysis of Biological Sequences on a 3D Triangular Lattice. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics