Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fast Approximate Covariance-Model-Based Database Search Method for Non-coding RNA

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

  • 841 Accesses

Abstract

A covariance-model-based search method for non-coding RNA genes is proposed which is much faster than dynamic programming, but which is shown to be very effective in experimental tests. The method incorporates secondary structure information in the entire first pass of the database, unlike the usual primary-sequence-only pre-filters applied when using dynamic programming. An iterative alignment refining algorithm which starts at an ungapped alignment and successively selects alignment breakpoints gives only an approximation to the optimal alignment, but appears to be sufficient for gene localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burge, C., Karlin, S.: Prediction of Complete Gene Structures in Human Genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  Google Scholar 

  2. Eddy, S.: Profile Hidden Markov Models. Bioinformatics 14, 755–763 (1998)

    Article  Google Scholar 

  3. Finn, R., et al.: Pfam: Clans, Web Tools and Services. Nucleic Acids Res. 34, D247–D251 (2006)

    Article  Google Scholar 

  4. Rivas, E., Eddy, S.: Secondary Structure Alone is Generally not Statistically Significant for Detection of Noncoding RNAs. Bioinformatics 16, 583–605 (2000)

    Article  Google Scholar 

  5. Eddy, S., Durbin, R.: RNA Sequence Analysis Using Covariance Models. Nucleic Acids Res. 22, 2079–2088 (1994)

    Article  Google Scholar 

  6. Durbin, R., et al.: Biological Sequence Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Altschul, S., et al.: Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)

    Google Scholar 

  8. Weinberg, Z., Ruzzo, W.: Faster Genome Annotation of Non-coding RNA Families Without Loss of Accuracy. In: Int. Conf. Res. Comp. Mol. Bio., pp. 243–251 (2004)

    Google Scholar 

  9. WormBase: http://www.wormbase.org

  10. Griffiths-Jones, S., et al.: Rfam: Annotating Non-coding RNAs in Complete Genomes. Nucleic Acids Res 33, D121–D124 (2005)

    Article  Google Scholar 

  11. Ensembl: http://www.ensembl.org

  12. Rfam: http://www.sanger.ac.uk/Software/Rfam/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, S.F. (2007). A Fast Approximate Covariance-Model-Based Database Search Method for Non-coding RNA. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics