Nothing Special   »   [go: up one dir, main page]

Skip to main content

Significance Analysis of Time-Course Gene Expression Profiles

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

Abstract

This paper proposes a statistical method for significance analysis of time-course gene expression profiles, called SATgene. The SATgene models time-dependent gene expression profiles by autoregressive equations plus Gaussian noises, and time-independent gene expression profiles by constant numbers plus Gaussian noises. The statistical F-testing for regression analysis is used to calculate the confidence probability (significance level) that a time-course gene expression profile is not time-independent. The user can use this confidence probability to select significantly expressed genes from a time-course gene expression dataset. Both one synthetic dataset and one biological dataset were employed to evaluate the performance of the SATgene, compared to traditional gene selection methods: the pairwise R-fold change method and the standard deviation method. The results show that the SATgene outperforms the traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Iyer, V.R., et al.: The transcript-ional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999)

    Article  Google Scholar 

  2. Gasch, A.P., et al.: Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 11, 4241–4257 (2000)

    Google Scholar 

  3. Spellman, P.T., et al.: Comprehensive identification of cell cycle-regulated genes of the Yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998)

    Google Scholar 

  4. Whitfield, M.L., et al.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell 13, 1977–2000 (2002)

    Article  Google Scholar 

  5. Laub, M.T., et al.: Global analysis of the genetic network controlling a bacteria cell cycle. Science 290, 2144–2148 (2000)

    Article  Google Scholar 

  6. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  7. Eisen, M.B., et al.: Cluster Analysis and Display of Genome-Wide Expression Patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  8. Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20, 2493–2503 (2004)

    Article  Google Scholar 

  9. Schliep, A., et al.: Analyzing gene expression time-course. IEEE/ACM Trans. on Computational Biology and Bioinformatics 2, 179–193 (2005)

    Article  Google Scholar 

  10. Baldi, P., Hatfield, G.W.: DNA Microarrays and Gene Expression: From Experiments to Data Analysis and Modeling. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  11. Alizadeh, A.A., et al.: Distinct types of diffuse large B-cell Lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  12. Claverie, J.M.: Computational methods for the identification of differential and coordinated gene expression. Human Molecular Genetic 8, 1821–1832 (1999)

    Article  Google Scholar 

  13. Tusher, V.G., et al.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001)

    Article  MATH  Google Scholar 

  14. Smyth, G.K., Michaud, J., Scott, H.S.: Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067–2075 (2005)

    Article  Google Scholar 

  15. Ly, D.H., et al.: Mitotic misregulation and human aging. Science 287, 2486–2492 (2000)

    Article  Google Scholar 

  16. Melnik, R.V.N.: Dynamic system evolution and Markov chain approximation. Discrete Dynamics in Nature and Society 2, 7–39 (1998)

    Article  MATH  Google Scholar 

  17. Ramoni, M.F., et al.: Cluster analysis of gene expression dynamics. Proc. Natl. Acad. Sci. USA 99, 9121–9912 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wu, F.X., Zhang, W.J., Kusalik, A.J.: Dynamic model-based clustering for time-course gene expression data. Journal of Bioinformatics and Computational Biology 3, 821–836 (2005)

    Article  Google Scholar 

  19. Harvey, A.C.: Time Series Models. MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  20. Seber, G.A.F., Lee, A.J.: Linear Regression Analysis, 2nd edn. Wiley Interscience, Hoboken (2003)

    MATH  Google Scholar 

  21. Yeung, K.Y.: Model-Based clustering and data transformations for gene expression data. Bioinformatics 17, 977–987 (2001)

    Article  Google Scholar 

  22. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, FX. (2007). Significance Analysis of Time-Course Gene Expression Profiles. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics