Abstract
We connect the algebraic specification language Casl with a variety of automated first-order provers. The heart of this connection is an institution comorphism from Casl to SoftFOL (softly typed first-order logic); the latter is then translated to the provers’ input syntaxes. We also describe a GUI integrating the translations and the provers into the Heterogeneous Tool Set. We report on experiences with provers, which led to fine-tuning of the translations. This framework can also be used for checking consistency of specifications.
This paper has been supported by Deutsche Forschungsgemeinschaft in the SFB/TR8 “Spatial Cognition” and in the project MULTIPLE under grant KR 1191/5-2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Common framework initiative for algebraic specification and development. http://www.cofi.info
Bennett, B.: Logical Representations for Automated Reasoning about Spatial Relationships. PhD thesis (1997)
Bidoit, M., Mosses, P.D. (eds.): CASL User Manual (With chapters by Mossakowski, Sannella,T.D., Tarlecki, A). LNCS, vol. 2900. Springer, Heidelberg (2004)
Cerioli, M., Meseguer, J.: May I borrow your logic (transporting logical structures along maps). Theoretical Comput. Sci. 173, 311–347 (1997)
CoFI (The Common Framework Initiative), Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)
Goguen, J., Rosu, G.: Institution morphisms. Formal aspects of computing 13, 274–307 (2002)
Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. In: Clarke, E., Kozen, D. (eds.) Logics of Programs. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984)
Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Comput. Sci. 105, 217–273 (1992)
Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)
Mossakowski, T.: Relating Casl with other specification languages: The institution level. Theoretical Comput. Sci. 286, 367–475 (2002)
Mossakowski, T., Maeder, C.: K. Lüttich. The Heterogeneous Tool Set. University of Bremen. Available at, http://www.tzi.de/cofi/hets
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)
Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48 (2006)
Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C., Topic, D.: SPASS. In: Voronkov, A. (ed.) Automated Deduction - CADE-18. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)
Zimmer, J., Autexier, S.: The MathServe System for Semantic Web Reasoning Services. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 140–144. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Lüttich, K., Mossakowski, T. (2007). Reasoning Support for Casl with Automated Theorem Proving Systems . In: Fiadeiro, J.L., Schobbens, PY. (eds) Recent Trends in Algebraic Development Techniques. WADT 2006. Lecture Notes in Computer Science, vol 4409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71998-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-71998-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71997-7
Online ISBN: 978-3-540-71998-4
eBook Packages: Computer ScienceComputer Science (R0)