Nothing Special   »   [go: up one dir, main page]

Skip to main content

Genetic Algorithms with Elitism-Based Immigrants for Changing Optimization Problems

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4448))

Included in the following conference series:

Abstract

Addressing dynamic optimization problems has been a challenging task for the genetic algorithm community. Over the years, several approaches have been developed into genetic algorithms to enhance their performance in dynamic environments. One major approach is to maintain the diversity of the population, e.g., via random immigrants. This paper proposes an elitism-based immigrants scheme for genetic algorithms in dynamic environments. In the scheme, the elite from previous generation is used as the base to create immigrants via mutation to replace the worst individuals in the current population. This way, the introduced immigrants are more adapted to the changing environment. This paper also proposes a hybrid scheme that combines the elitism-based immigrants scheme with traditional random immigrants scheme to deal with significant changes. The experimental results show that the proposed elitism-based and hybrid immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bendtsen, C.N., Krink, T.: Dynamic memory model for non-stationary optimization. In: Proc. of the 2002 Congress on Evol. Comput. pp. 145–150 (2002)

    Google Scholar 

  2. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. Proc. of the 1999 Congr. on Evol. Comput. 3, 1875–1882 (1999)

    Article  Google Scholar 

  3. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Boston, MA (2002)

    Book  MATH  Google Scholar 

  4. Branke, J., Kaußler, T., Schmidth, C., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Proc. of the Adaptive Computing in Design and Manufacturing, pp. 299–308 (2000)

    Google Scholar 

  5. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing envi- ronments. In: Proc. of the 5th Int. Conf. on Genetic Algorithms, pp. 523–530 (1993)

    Google Scholar 

  6. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Proc. of the 2nd Int. Conf. on Genetic Algorithms, pp. 59–68 (1987)

    Google Scholar 

  7. Grefenstette, J.J.: Genetic algorithms for changing environments. Parallel Problem Solving from Nature II, 137–144 (1992)

    Google Scholar 

  8. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: fitness landscapes and GA performance. Proc. of the 1st European Conf. on Artificial Life, pp. 245–254 (1992)

    Google Scholar 

  9. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. on Evol. Comput. 10(4), 444–458 (2006)

    Google Scholar 

  10. Simões, A., Costa, E.: An immune system-based genetic algorithm to deal with dynamic environments: diversity and memory. In: Proc. of the 6th Int. Conf. on Neural Networks and Genetic Algorithms, pp. 168-174 (2003)

    Google Scholar 

  11. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environments. In: Proc. of the 1999 Congress on Evol. Comput. pp. 1843–1850 (1999)

    Google Scholar 

  12. Vavak, F., Fogarty, T.C.: A comparative study of steady state and generational genetic algorithms for use in nonstationary environments. In: Fogarty, T.C. (ed.) AISB Workshop on Evolutionary Computing. LNCS, vol. 1143, pp. 297–304. Springer, Berlin Heidelberg New York (1996)

    Google Scholar 

  13. Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm. Proc. of the 2003 Congr. on Evol. Comput. 3, 2246–2253 (2003)

    Article  Google Scholar 

  14. Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments. Proc. of the 2005 Genetic and Evol. Comput. Conf. 2, 1115–1122 (2005)

    Google Scholar 

  15. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Computing 9(11), 815–834 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, S. (2007). Genetic Algorithms with Elitism-Based Immigrants for Changing Optimization Problems. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71805-5_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71804-8

  • Online ISBN: 978-3-540-71805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics