Abstract
This paper discusses a study towards dynamic fitness based partitioning in IntraVascular UltraSound (IVUS) image analysis. Mixed-Integer Evolution Strategies (MI-ES) have recently been successfully used to optimize control parameters of a multi-agent image interpretation system for IVUS images lumen detection. However, because of complex interpretation contexts, it is impossible to find one single solution which works well on each possible image of each possible patient. Therefore it would be wise to let MI-ES find a set of solutions based on an optimal partition of IVUS images. Here a methodology is presented which does dynamic fitness based partitioning of the data during the MI-ES parameter optimization procedure. As a first step we applied this method to a challenging artificial test case which demonstrates the feasibility of our approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bovenkamp, E.G.P., Eggermont, J., Li, R., Emmerich, M.T.M., Bäck, Th., Dijkstra, J., Reiber, J.H.C.: Optimizing IVUS Lumen Segmentations using Evolutionary Algorithms. In: Medical Image Computing and Computer-Assisted Intervention, Kopenhagen, Denmark (2006)
Handl, J., Knowles, J.: An investigation of representations and operators for evolutionary data clustering with a variable number of clusters. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. LNCS, vol. 4193, pp. 839–849. Springer, Berlin Heidelberg New York (2006)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)
Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: a general purpose evolutionary computation library. In: EA-01, Evolution Artificielle, 5th International Conference in Evolutionary Algorithms (2001)
Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Bäck, Th., Dijkstra, J., Reiber, J.H.C.: Mixed-integer optimization of coronary vessel image analysis using evolution strategies. In: Genetic and Evolutionary Computation Conference, GECCO, Proceedings, pp. 1645–1652 (2006)
Vanneschi, L., Mauri, G., Valsecchi, A., Cagnoni, S.: Heterogeneous cooperative coevolution: strategies of integration between gp and ga. In: Genetic and Evolutionary Computation Conference, GECCO, Proceedings, pp. 361–368 (2006)
Roberts, M.E., Claridge, E.: Cooperative coevolution of image feature construction and object detection. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 902–911. Springer, Berlin Heidelberg New York (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, R. et al. (2007). Towards Dynamic Fitness Based Partitioning for IntraVascular UltraSound Image Analysis. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-71805-5_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71804-8
Online ISBN: 978-3-540-71805-5
eBook Packages: Computer ScienceComputer Science (R0)