Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Dynamic Fitness Based Partitioning for IntraVascular UltraSound Image Analysis

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2007)

Abstract

This paper discusses a study towards dynamic fitness based partitioning in IntraVascular UltraSound (IVUS) image analysis. Mixed-Integer Evolution Strategies (MI-ES) have recently been successfully used to optimize control parameters of a multi-agent image interpretation system for IVUS images lumen detection. However, because of complex interpretation contexts, it is impossible to find one single solution which works well on each possible image of each possible patient. Therefore it would be wise to let MI-ES find a set of solutions based on an optimal partition of IVUS images. Here a methodology is presented which does dynamic fitness based partitioning of the data during the MI-ES parameter optimization procedure. As a first step we applied this method to a challenging artificial test case which demonstrates the feasibility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bovenkamp, E.G.P., Eggermont, J., Li, R., Emmerich, M.T.M., Bäck, Th., Dijkstra, J., Reiber, J.H.C.: Optimizing IVUS Lumen Segmentations using Evolutionary Algorithms. In: Medical Image Computing and Computer-Assisted Intervention, Kopenhagen, Denmark (2006)

    Google Scholar 

  2. Handl, J., Knowles, J.: An investigation of representations and operators for evolutionary data clustering with a variable number of clusters. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. LNCS, vol. 4193, pp. 839–849. Springer, Berlin Heidelberg New York (2006)

    Chapter  Google Scholar 

  3. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  4. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: a general purpose evolutionary computation library. In: EA-01, Evolution Artificielle, 5th International Conference in Evolutionary Algorithms (2001)

    Google Scholar 

  5. Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Bäck, Th., Dijkstra, J., Reiber, J.H.C.: Mixed-integer optimization of coronary vessel image analysis using evolution strategies. In: Genetic and Evolutionary Computation Conference, GECCO, Proceedings, pp. 1645–1652 (2006)

    Google Scholar 

  6. Vanneschi, L., Mauri, G., Valsecchi, A., Cagnoni, S.: Heterogeneous cooperative coevolution: strategies of integration between gp and ga. In: Genetic and Evolutionary Computation Conference, GECCO, Proceedings, pp. 361–368 (2006)

    Google Scholar 

  7. Roberts, M.E., Claridge, E.: Cooperative coevolution of image feature construction and object detection. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 902–911. Springer, Berlin Heidelberg New York (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, R. et al. (2007). Towards Dynamic Fitness Based Partitioning for IntraVascular UltraSound Image Analysis. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71805-5_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71804-8

  • Online ISBN: 978-3-540-71805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics