Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Genetic Programming Approach to Feature Selection and Classification of Instantaneous Cognitive States

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4448))

Included in the following conference series:

Abstract

The study of human brain functions has dramatically increased in recent years greatly due to the advent of Functional Magnetic Resonance Imaging. This paper presents a genetic programming approach to the problem of classifying the instantaneous cognitive state of a person based on his/her functional Magnetic Resonance Imaging data. The problem provides a very interesting case study of training classifiers with extremely high dimensional, sparse and noisy data. We apply genetic programming for both feature selection and classifier training. We present a successful case study of induced classifiers which accurately discriminate between cognitive states produced by listening to different auditory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haxby, J. et al.: Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex. Science 293, 2425–2430 (2001)

    Article  Google Scholar 

  2. Wang, X., et al.: Training fMRI Classifiers to Detect Cognitive States across Multiple Human Subjects. Neural Information Processing Systems (2003)

    Google Scholar 

  3. Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to Decode Cognitive States from Brain Images. Machine Learning 175(1-2), 145–175 (2004)

    Article  MATH  Google Scholar 

  4. Mitchell, T., Hutchinson, R., Just, M., Niculescu, R.N., Pereira, F., Wang, X.: Classifying Instantaneous Cognitive States from fMRI Data, American Medical Informatics Association Symposium (October 2003)

    Google Scholar 

  5. Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage 19, 261–270 (2003)

    Article  Google Scholar 

  6. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(3), 131–156 (1997)

    Article  Google Scholar 

  7. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. Special Issue on Relevance 97, 245–271 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Siedlecki, W., Sklansky, J.: A note on genetic algorithms for largescale feature selection. Patt. Recognit. Lett. 10, 335–347 (1989)

    Article  MATH  Google Scholar 

  9. Casillas, J., Cordon, O., Del Jesus, M.J., Herrera, F.: Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems. Inform. Sci. 136, 135–157 (2001)

    Article  MATH  Google Scholar 

  10. Pal, N.R., Nandi, S., Kundu, M.K.: Self-crossover: A new genetic operator and its application to feature selection. Int. J. Syst. Sci. 29(2), 207–212 (1998)

    Article  Google Scholar 

  11. Sherrah, J., Bogner, R.E., Bouzerdoum, A.: Automatic selection of features for classification using genetic programming, In: Proc. Australian New Zealand Conf. Intelligent Information Systems, pp. 284-287 (1996)

    Google Scholar 

  12. Siedlecki, W., Sklansky, J.: On automatic feature selection. Int. J. Pattern Recognit. Artif. Intell. 2(2), 197–220 (1988)

    Article  MATH  Google Scholar 

  13. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Patt. Recognit. 33, 25–41 (2000)

    Article  Google Scholar 

  14. Richeldi, M., Lanzi, P.: Performing effective feature selection by investigating the deep structure of the data, In: Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining. Menlo Park, CA, pp. 379-383 (1996)

    Google Scholar 

  15. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA (1992)

    MATH  Google Scholar 

  16. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann, New York.

    Google Scholar 

  17. Muni, D.P., Pal, N.R., Das, J.: Genetic Programming for Simultaneous Feature Selection and Classifier Design IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics, vol.36(1) (2006)

    Google Scholar 

  18. Wessinger, C.M., VanMeter, J., Tian, B., Van Lare, J., Pekar, J., Rauschecker, J.P.: Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn Neurosci. 13(1), 1–7 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramirez, R., Puiggros, M. (2007). A Genetic Programming Approach to Feature Selection and Classification of Instantaneous Cognitive States. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71805-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71804-8

  • Online ISBN: 978-3-540-71805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics