Abstract
Quantum effects are a natural phenomenon and just like evolution, or immune systems, can serve as an inspiration for the design of computing algorithms. This study illustrates how a quantum-inspired evolutionary algorithm can be constructed and examines the utility of the resulting algorithm on Option Pricing model calibration. The results from the algorithm are shown to be robust and comparable to those of other algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Spector, L.: Automatic Quantum Computer Programming: A Genetic Programming Approach. Kluwer Academic Publishers, Boston, MA (2004)
Narayanan, A., Moore, M.: Quantum-inspired genetic algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 61–66. IEEE Press, NJ, New York (1996)
Han, K-H., Kim, J-H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593 (2002)
Han, K-H., Kim, J-H.: Quantum-inspired evolutionary algorithms with a new termination criterion, H ε gate and two-phase scheme. IEEE Transactions on Evolutionary Computation 8(3), 156–169 (2002)
Yang, S., Wang, M., Jiao, L.: A genetic algorithm based on quantum chromosome. In: ICSP 04. Proceedings of IEEE International Conference on Signal Processing, 31 August 4 September 2004, pp. 1622–1625. IEEE Press, NJ, New York (2004)
Yang, S., Wang, M., Jiao, L.: A novel quantum evolutionary algorithm and its application. In: CEC 2004. Proceedings of IEEE Congress on Evolutionary Computation 2004, pp. 820–826. IEEE Press, NJ, New York (2004)
Brabazon, A., O’Neill, M.: Biologically-inspired Algorithms for Financial Modelling. Springer, Berlin Heidelberg New York (2006)
Yang, S., Wang, M., Jiao, L.: A Quantum Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary Computation 2004, vol. 1, pp. 320–324. IEEE Press, New Jersey (2004)
Lee, C-D., Chen, Y-J., Huang, H-C., Hwang, R-C., Yu, G-R.: The non-stationary signal prediction by using quantum NN. In: Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, 10-13 October 2002, pp. 10–13. IEEE Press, NJ, New York (2004)
Garavaglia, S.: A quantum-inspired self-organizing map (QISOM). In: IJCNN 2002. Proceedings of 2002 International Joint Conference on Neural Networks, 12-17 May, pp. 1779–1784. IEEE Press, NJ, New York (2002)
Tsai, X-Y., Chen, Y-J., Huang, H-C., Chuang, S-J., Hwang, R-C.: Quantum NN vs NN in Signal Recognition. In: ICITA 05. Proceedings of the Third International Conference on Information Technology and Applications, 4-7 July, pp. 308–312. IEEE Press, NJ, New York (2005)
Li, Y., Zhang, Y., Zhao, R., Jiao, L.: The immune quantum-inspired evolutionary algorithm. In: Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, 10-13 October 2002, pp. 3301–3305. IEEE Press, NJ, New York (2004)
Jiao, L., Li, Y.: Quantum-inspired immune clonal optimization. In: ICNN &B 2005. Proceedings of 2005 International Conference on Neural Networks and Brain, 13-15 October 2005, pp. 461–466. IEEE Press, NJ, New York (2005)
da Cruz, A., Vellasco, M., Pacheco, M.: Quantum-inspired evolutionary algorithm for numerical optimization. In: da Cruz, A., Vellasco, M., Pacheco, M. (eds.) CEC 2006. Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, 16-21 July, pp. 9180–9187. IEEE Press, NJ, New York (2006)
Han, K-H., Kim, J-H.: On setting the parameters of quantum-inspired evolutionary algorithm for practical applications. In: Proceedings of IEEE Congress on Evolutionary Computing, 8 August 12 December 2003, pp. 178–184. IEEE Press, NJ, New York (2003)
Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–654 (1973)
Madan, D., Seneta, E.: The VG model for share market returns. Journal of Business 63, 511–524 (1990)
Madan, D., Milne, F.: Option pricing with VG martingale components. Mathematical Finance 1(4), 39–55 (1991)
Madan, D., Carr, P., Chang, E.: The Variance Gamma Process and Option Pricing. European Finance Review 2, 79–105 (1998)
Cont, R., Ben Hamida, S.: Recovering volatility from option prices by evolutionary optimisation, Journal of Computational Finance 8 (4) (Summer 2005)
Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization 9(1), 112–147 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fan, K., Brabazon, A., O’Sullivan, C., O’Neill, M. (2007). Quantum-Inspired Evolutionary Algorithms for Calibration of the VG Option Pricing Model. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-71805-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71804-8
Online ISBN: 978-3-540-71805-5
eBook Packages: Computer ScienceComputer Science (R0)