Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantum-Inspired Evolutionary Algorithms for Calibration of the VG Option Pricing Model

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4448))

Included in the following conference series:

  • 2347 Accesses

Abstract

Quantum effects are a natural phenomenon and just like evolution, or immune systems, can serve as an inspiration for the design of computing algorithms. This study illustrates how a quantum-inspired evolutionary algorithm can be constructed and examines the utility of the resulting algorithm on Option Pricing model calibration. The results from the algorithm are shown to be robust and comparable to those of other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spector, L.: Automatic Quantum Computer Programming: A Genetic Programming Approach. Kluwer Academic Publishers, Boston, MA (2004)

    MATH  Google Scholar 

  2. Narayanan, A., Moore, M.: Quantum-inspired genetic algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 61–66. IEEE Press, NJ, New York (1996)

    Chapter  Google Scholar 

  3. Han, K-H., Kim, J-H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593 (2002)

    Article  Google Scholar 

  4. Han, K-H., Kim, J-H.: Quantum-inspired evolutionary algorithms with a new termination criterion, H ε gate and two-phase scheme. IEEE Transactions on Evolutionary Computation 8(3), 156–169 (2002)

    MathSciNet  Google Scholar 

  5. Yang, S., Wang, M., Jiao, L.: A genetic algorithm based on quantum chromosome. In: ICSP 04. Proceedings of IEEE International Conference on Signal Processing, 31 August 4 September 2004, pp. 1622–1625. IEEE Press, NJ, New York (2004)

    Google Scholar 

  6. Yang, S., Wang, M., Jiao, L.: A novel quantum evolutionary algorithm and its application. In: CEC 2004. Proceedings of IEEE Congress on Evolutionary Computation 2004, pp. 820–826. IEEE Press, NJ, New York (2004)

    Google Scholar 

  7. Brabazon, A., O’Neill, M.: Biologically-inspired Algorithms for Financial Modelling. Springer, Berlin Heidelberg New York (2006)

    MATH  Google Scholar 

  8. Yang, S., Wang, M., Jiao, L.: A Quantum Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary Computation 2004, vol. 1, pp. 320–324. IEEE Press, New Jersey (2004)

    Google Scholar 

  9. Lee, C-D., Chen, Y-J., Huang, H-C., Hwang, R-C., Yu, G-R.: The non-stationary signal prediction by using quantum NN. In: Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, 10-13 October 2002, pp. 10–13. IEEE Press, NJ, New York (2004)

    Google Scholar 

  10. Garavaglia, S.: A quantum-inspired self-organizing map (QISOM). In: IJCNN 2002. Proceedings of 2002 International Joint Conference on Neural Networks, 12-17 May, pp. 1779–1784. IEEE Press, NJ, New York (2002)

    Google Scholar 

  11. Tsai, X-Y., Chen, Y-J., Huang, H-C., Chuang, S-J., Hwang, R-C.: Quantum NN vs NN in Signal Recognition. In: ICITA 05. Proceedings of the Third International Conference on Information Technology and Applications, 4-7 July, pp. 308–312. IEEE Press, NJ, New York (2005)

    Google Scholar 

  12. Li, Y., Zhang, Y., Zhao, R., Jiao, L.: The immune quantum-inspired evolutionary algorithm. In: Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, 10-13 October 2002, pp. 3301–3305. IEEE Press, NJ, New York (2004)

    Google Scholar 

  13. Jiao, L., Li, Y.: Quantum-inspired immune clonal optimization. In: ICNN &B 2005. Proceedings of 2005 International Conference on Neural Networks and Brain, 13-15 October 2005, pp. 461–466. IEEE Press, NJ, New York (2005)

    Google Scholar 

  14. da Cruz, A., Vellasco, M., Pacheco, M.: Quantum-inspired evolutionary algorithm for numerical optimization. In: da Cruz, A., Vellasco, M., Pacheco, M. (eds.) CEC 2006. Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, 16-21 July, pp. 9180–9187. IEEE Press, NJ, New York (2006)

    Google Scholar 

  15. Han, K-H., Kim, J-H.: On setting the parameters of quantum-inspired evolutionary algorithm for practical applications. In: Proceedings of IEEE Congress on Evolutionary Computing, 8 August 12 December 2003, pp. 178–184. IEEE Press, NJ, New York (2003)

    Google Scholar 

  16. Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Madan, D., Seneta, E.: The VG model for share market returns. Journal of Business 63, 511–524 (1990)

    Article  Google Scholar 

  18. Madan, D., Milne, F.: Option pricing with VG martingale components. Mathematical Finance 1(4), 39–55 (1991)

    Article  MATH  Google Scholar 

  19. Madan, D., Carr, P., Chang, E.: The Variance Gamma Process and Option Pricing. European Finance Review 2, 79–105 (1998)

    Article  MATH  Google Scholar 

  20. Cont, R., Ben Hamida, S.: Recovering volatility from option prices by evolutionary optimisation, Journal of Computational Finance 8 (4) (Summer 2005)

    Google Scholar 

  21. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization 9(1), 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, K., Brabazon, A., O’Sullivan, C., O’Neill, M. (2007). Quantum-Inspired Evolutionary Algorithms for Calibration of the VG Option Pricing Model. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71805-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71804-8

  • Online ISBN: 978-3-540-71805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics