Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy-Preserving Frequent Pattern Sharing

  • Conference paper
Advances in Databases: Concepts, Systems and Applications (DASFAA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4443))

Included in the following conference series:

  • 1489 Accesses

Abstract

Some of the knowledge discovered by data mining may contain sensitive information, which should be hidden before sharing the result of data mining. In this paper, we consider that the knowledge for sharing is discovered by frequent pattern mining, and some of the frequent patterns are private, which cannot be shared. Our problem of privacy-preserving frequent pattern sharing is to hide these private patterns before sharing the result of frequent pattern mining, and at the same time maximize the number of non-private frequent patterns to be shared. We show that this problem is NP-hard, and present three item-based pattern sanitization algorithms for transforming the result of frequent pattern mining into a privacy-free frequent pattern set.

This research was supported by the Shanghai Rising-Star Program (No. 05QMX1405), the National Natural Science Foundation of China (No. 60303008), the National Grand Fundamental Research 973 Program of China (No. 2005CB321905).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calders, T.: Computational complexity of itemset frequency satisfiability. In: PODS, Paris, France, June 2004, pp. 143–154 (2004)

    Google Scholar 

  2. Mielikainen, T.: On inverse frequent set mining. In: Workshop on Privacy Preserving Data Mining, November 2003, pp. 18–23 (2003)

    Google Scholar 

  3. Clifton, C., Marks, D.: Security and privacy implications of data mining. In: ACM SIGMOD Workshop on Data Mining and Knowledge Discovery, Montreal, Canada, pp. 15–19. ACM Press, New York (1996)

    Google Scholar 

  4. Han, J., Kamber, M.: Data Mining: Concept and Techniques. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  6. Oliveira, S.R.M., Zaïane, O.R., Saygın, Y.: Secure Association Rule Sharing. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 74–85. Springer, Heidelberg (2004)

    Google Scholar 

  7. Wang, Z., Wang, W., Shi, B., Boey, S.H.: Preserving private knowledge in frequent pattern mining. In: IEEE ICDM Workshop on Privacy Aspects of Data Mining, Hong Kong, China, pp. 530–534. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  8. Atzori, M., Bonchi, F., Giannotti, F., Pedreschi, D.: k-Anonymous Patterns. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 10–21. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure limitation of sensitive rules. In: IEEE Knowledge and Data Engineering Exchange Workshop, Chicago, IL, pp. 45–52. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  10. Oliveira, S.R.M., Zaïane, O.R.: Algorithms for balancing privacy and knowledge discovery in association rule mining. In: IDEAS, Hong Kong, China, pp. 54–65 (2003)

    Google Scholar 

  11. Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of association rules. SIGMOD Record 30(4), 45–54 (2001)

    Article  Google Scholar 

  12. Wang, Z., Liu, B., Wang, W., Zhou, H., Shi, B.-L.: An Effective Approach for Hiding Sensitive Knowledge in Data Publishing. In: Yu, J.X., Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016, pp. 146–157. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, Santiago, Chile, pp. 487–499 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ramamohanarao Kotagiri P. Radha Krishna Mukesh Mohania Ekawit Nantajeewarawat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Wang, W., Shi, B., Boey, S.H. (2007). Privacy-Preserving Frequent Pattern Sharing. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds) Advances in Databases: Concepts, Systems and Applications. DASFAA 2007. Lecture Notes in Computer Science, vol 4443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71703-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71703-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71702-7

  • Online ISBN: 978-3-540-71703-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics