Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Effective Multi-level Algorithm Based on Ant Colony Optimization for Bisecting Graph

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4426))

Included in the following conference series:

Abstract

An important application of graph partitioning is data clustering using a graph model — the pairwise similarities between all data objects form a weighted graph adjacency matrix that contains all necessary information for clustering. The min-cut bipartitioning problem is a fundamental graph partitioning problem and is NP-Complete. In this paper, we present an effective multi-level algorithm based on ant colony optimization(ACO) for bisecting graph. The success of our algorithm relies on exploiting both the ACO method and the concept of the graph core. Our experimental evaluations on 18 different graphs show that our algorithm produces encouraging solutions compared with those produced by MeTiS that is a state-of-the-art partitioner in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zha, H., et al.: Bipartite graph partitioning and data clustering. In: Proc. ACM Conf Information and Knowledge Management, pp. 25–32. ACM Press, New York (2001)

    Google Scholar 

  2. Ding, C., et al.: A Min-Max cut algorithm for graph partitioning and data clustering. In: Proc. IEEE Conf. Data Mining, pp. 107–114. IEEE Computer Society Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  3. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  4. Bui, T., Leland, C.: Finding good approximate vertex and edge partitions is NP-hard. Information Processing Letters 42, 153–159 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49, 291–307 (1970)

    Google Scholar 

  6. Fiduccia, C., Mattheyses, R.: A linear-time heuristics for improving network partitions. In: Proc. 19th Design Automation Conf., pp. 175–181 (1982)

    Google Scholar 

  7. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning. Integration, the VLSI Journal 19, 1–81 (1995)

    Article  MATH  Google Scholar 

  8. Tao, L., et al.: Simulated annealing and tabu search algorithms for multiway graph partition. Journal of Circuits, Systems and Computers, 159–185 (1992)

    Google Scholar 

  9. Kadłuczka, P., Wala, K.: Tabu search and genetic algorithms for the generalized graph partitioning problem. Control and Cybernetics, 459–476 (1995)

    Google Scholar 

  10. Żola, J., Wyrzykowski, R.: Application of genetic algorithm for mesh partitioning. In: Proc. Workshop on Parallel Numerics, pp. 209–217 (2000)

    Google Scholar 

  11. Bahreininejad, A., Topping, B.H.V., Khan, A.I.: Finite element mesh partitioning using neural networks. Advances in Engineering Software, 103–115 (1996)

    Google Scholar 

  12. Leng, M., Yu, S., Chen, Y.: An effective refinement algorithm based on multi-level paradigm for graph bipartitioning. In: The IFIP TC5 International Conference on Knowledge Enterprise. IFIP Series, pp. 294–303. Springer, Heidelberg (2006)

    Google Scholar 

  13. Leng, M., Yu, S.: An effective multi-level algorithm for bisecting graph. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 493–500. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Karypis, G., Kumar, V.: MeTiS 4.0: Unstructured graphs partitioning and sparse matrix ordering system. Technical Report, Department of Computer Science, University of Minnesota (1998)

    Google Scholar 

  15. Selvakkumaran, N., Karypis, G.: Multi-objective hypergraph partitioning algorithms for cut and maximum subdomain degree minimization. IEEE Trans. Computer Aided Design 25, 504–517 (2006)

    Article  Google Scholar 

  16. Amine, A.B., Karypis, G.: Multi-level algorithms for partitioning power-law graphs. Technical Report, Department of Computer Science, University of Minnesota, Available on the WWW at URL (2005), http://www.cs.umn.edu/~metis

  17. Koros̃ec, P., S̃ilc, J., Robic̃, B.: Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Computing, 785–801 (2004)

    Google Scholar 

  18. Alpert, C.J.: The ISPD98 circuit benchmark suite. In: Proc. Intel Symposium of Physical Design, pp. 80–85 (1998)

    Google Scholar 

  19. Dorigo, M., Gambardella., L.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 53–66 (1997)

    Google Scholar 

  20. Dorigo, M., Maniezzo, V., Colorni., A.: Ant system: Optimization by a colony of cooperating agents. IEEE Trans. on SMC, 29–41 (1996)

    Google Scholar 

  21. Langham, A.E., Grant, P.W.: Using competing ant colonies to solve k-way partitioning problems with foraging and raiding strategies. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 621–625. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Seidman, S.B.: Network structure and minimum degree. Social Networks, 269–287 (1983)

    Google Scholar 

  23. Batagelj, V., Zavers̃nik, M.: An O(m) Algorithm for cores decomposition of networks. Journal of the ACM, 799–804 (2001)

    Google Scholar 

  24. Batagelj, V., Zavers̃nik, M.: Generalized cores. Journal of the ACM, 1–8 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zhi-Hua Zhou Hang Li Qiang Yang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Leng, M., Yu, S. (2007). An Effective Multi-level Algorithm Based on Ant Colony Optimization for Bisecting Graph. In: Zhou, ZH., Li, H., Yang, Q. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in Computer Science(), vol 4426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71701-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71701-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71700-3

  • Online ISBN: 978-3-540-71701-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics