Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tools for Simulating and Analyzing RNA Folding Kinetics

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

It has recently been found that some RNA functions are determined by the actual folding kinetics and not just the RNA’s nucleotide sequence or its native structure. We present new computational tools for simulating and analyzing RNA folding kinetic metrics such as population kinetics, folding rates, and the folding of particular subsequences. Our method first builds an approximate representation (called a map) of the RNA’s folding energy landscape, and then uses specialized analysis techniques to extract folding kinetics from the map. We provide a new sampling strategy called Probabilistic Boltzmann Sampling (PBS) that enables us to approximate the folding landscape with much smaller maps, typically by several orders of magnitude. We also describe a new analysis technique, Map-based Monte Carlo (MMC) simulation, to stochastically extract folding pathways from the map. We demonstrate that our technique can be applied to large RNA (e.g., 200+ nucleotides), where representing the full landscape is infeasible, and that our tools provide results comparable to other simulation methods that work on complete energy landscapes. We present results showing that our approach computes the same relative functional rates as seen in experiments for the relative plasmid replication rates of ColE1 RNAII and its mutants, and for the relative gene expression rates of MS2 phage RNA and its mutants.

Supported in part by NSF Grants EIA-0103742, ACR-0081510, ACR-0113971, CCR-0113974, ACI-0326350, by the DOE, and by HP. Thomas supported in part by a Dept. of Education GAANN Fellowship, a NSF Graduate Research Fellowship, and a P.E.O. Scholarship. Tapia supported in part by a NIH Molecular Biophysics Training Grant (T32GM065088) and a Dept. of Education GAANN Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amato, N.M., Dill, K.A., Song, G.: Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. J. Comput. Biol (Special issue of Int. Conf. Comput. Molecular Biology (RECOMB)) 10(3-4), 239–256 (2002)

    Google Scholar 

  2. Bartel, D.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  3. Chen, S.-J., Dill, K.A.: RNA folding energy landscapes. Proc. Natl. Acad. Sci. USA 97, 646–651 (2000)

    Article  Google Scholar 

  4. Dill, K.A., Chan, H.S.: From Levinthal to pathways to funnels: The new view of protein folding kinetics. Nat. Struct. Biol. 4, 10–19 (1997)

    Article  Google Scholar 

  5. Ding, Y., Lawrence, C.E.: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Research 31, 7280–7301 (2003)

    Article  Google Scholar 

  6. Dirks, R., Pierce, N.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. Journal of Computational Chemistry 24, 1664–1677 (2003)

    Article  Google Scholar 

  7. Flamm, C.: Kinetic Folding of RNA. PhD thesis, University of Vienna, Austria (August 1998)

    Google Scholar 

  8. Groeneveld, H., Thimon, K., van Duin, J.: Translational control of matruation-protein synthesis is phage MS2: a role of the kinetics of RNA folding? RNA 1, 79–88 (1995)

    Google Scholar 

  9. Gultyaev, A., Batenburg, F.V., Pleij, C.: The computer simulation of RNA folding pathways using a genetic algorithm. J. Mol. Biol. 250, 37–51 (1995)

    Article  Google Scholar 

  10. Higgs, P.G.: RNA secondary structure: physical and computational aspects. Quarterly Reviews of Biophysics 33, 199–253 (2000)

    Article  Google Scholar 

  11. Hofacker, I.L.: RNA secondary structures: A tractable model of biopolymer folding. J. Theor. Biol. 212, 35–46 (1998)

    Google Scholar 

  12. Kampen, N.G.V.: Stochastic Processes in Physics and Chemistry. North-Holland, New York (1992)

    Google Scholar 

  13. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)

    Article  Google Scholar 

  14. Klaff, P., Riesner, D., Steger, G.: RNA structure and the regulation of gene expression. Plant Mol. Biol. 32, 89–106 (1996)

    Article  Google Scholar 

  15. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  16. Nagel, J.H., Pleij, C.W.: Self-induced structural switches in RNA. Biochimie 84, 913–923 (2002)

    Article  Google Scholar 

  17. Newman, M.E.J., Barkenma, G.T.: Monte Carlo Methods in Statistical Physics. Clarendon Press, Oxford (1999)

    MATH  Google Scholar 

  18. Nussinov, R., Piecznik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matching. SIAM J. Appl. Math. 35, 68–82 (1972)

    Article  Google Scholar 

  19. Ozkan, S.B., Dill, K.A., Bahar, I.: Computing the transition state population in simple protein models. Biopolymers 68, 35–46 (2003)

    Article  Google Scholar 

  20. Rivas, E., Eddy, S.: A dynamic programming algorithm for rna structure prediction including pseduoknots. JMB 285, 2053–2068 (2000)

    Article  Google Scholar 

  21. Shapiro, B.A., Bengali, D., Kasprzak, W., Wu, J.C.: RNA folding pathway functional intermediates: Their prediction and analysis. J. Mol. Biol. 312, 27–44 (2001)

    Article  Google Scholar 

  22. Song, G., Thomas, S., Dill, K., Scholtz, J., Amato, N.: A path planning-based study of protein folding with a case study of hairpin formation in protein G and L. In: Proc. Pacific Symposium of Biocomputing (PSB), pp. 240–251 (2003)

    Google Scholar 

  23. Tang, X., Kirkpatrick, B., Thomas, S., Song, G., Amato, N.M.: Using motion planning to study RNA folding kinetics. J. Comput. Biol. 12(6), 862–881 (2004)

    Article  Google Scholar 

  24. Thomas, S., Tang, X., Tapia, L., Amato, N.M.: Simulating protein motions with rigidity analysis. In: Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pp. 394–409 (2006)

    Google Scholar 

  25. Tinoco, I., Bustamante, C.: How RNA folds. J. Mol. Biol. 293, 271–281 (1999)

    Article  Google Scholar 

  26. Wolfinger, M.: The energy landscape of RNA folding. Master’s thesis, University of Vienna, Austria (March 2001)

    Google Scholar 

  27. Wuchty, S.: Suboptimal secondary structures of RNA. Master’s thesis, University of Vienna, Austria (March 1998)

    Google Scholar 

  28. Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H.: Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc. Natl. Acad. Sci. USA 100, 15310–15315 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide. In: Barciszewski, J., Clark, B.F.C. (eds.) RNA Biochemistry and Biotechnology. NATO ASI Series, Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Tang, X., Thomas, S., Tapia, L., Amato, N.M. (2007). Tools for Simulating and Analyzing RNA Folding Kinetics. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics