Abstract
Chest radiographs play an important role in the diagnosis of lung cancer. Detection of pulmonary nodules in chest radiographs forms the basis of early detection. Due to its sparse bone structure and overlapping of the nodule with ribs and clavicles the nodule is hard to detect in conventional chest radiographs. We present a technique based on Independent Component Analysis (ICA) for the suppression of posterior ribs and clavicles which will enhance the visibility of the nodule and aid the radiologist in the diagnosis process.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schilham, A.M.R., Ginneken, B.V., Loog, M.: A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Medical Image Analysis 10, 247–258 (2006)
Suzuki, K., Abe, H., MacMahon, H., Doi, K.: Image-Processing Technique for Suppressing Ribs in Chest Radiographs by Means of Massive Training Artificial Neural Network (MTANN). IEEE transactions on Medical Imaging 25(4) (2006)
Inki, M.: ICA features of image data in one, two and three dimensions. In: Proceedings of Independent Component Analysis (ICA-2003), pp. 861–866. IEEE Computer Society Press, Los Alamitos (2003)
Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, Hoboken (2001)
Bell, A.J., Sejnowski, T.J.: The ’Independent Components’ of natural images are edge filters. Vision Research, 3327–3338 (1997)
Lindeberg, T.: Feature Detection with automatic scale selection. International Journal of Computer Vision 30, 79–116 (1998)
Xu, X.W., Doi, K., Kobayashi, T., MacMahon, H., Giger, M.L.: Development of an improved CAD scheme for automated detection of lung nodules in digital chest images. Med. Phys. 24, 1395–1403 (1997)
Johkoh, T., Kozuka, T., Tomiyama, N., Hamada, S., Honda, O., Mihara, N., Koyama, M.: Temporal subtraction for detection of solitary pulmonary nodules on chest radiographs: evaluation of a commercially available computer-aided diagnosis system. Radiology 223, 806–811 (2002)
Shiraishi, J., Abe, H., Engelmann, R., Doi, K.: Effect of high sensitivity in a computerized scheme for detecting extremely subtle solitary pulmonary nodules in chest radiographs: observer performance study. Acad. Radiology 10, 1302–1311 (2003)
Lange, D.H., Pratt, H., Inbar, G.F.: Modeling and Estimation of single evoked brain potential components. IEEE transactions on BioMedical Engineering 44 (1997)
Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K., Matsui, M., Fujita, H., Kodera, Y., Doi, K.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. American Journal of Roentgenology 174 (2000)
Lu, W., Rajapakse, J.C.: Approach and Applications of Constrained ICA. IEEE transactions on Neural Networks 16(1) (2005)
McLean, T.R.: Why Do Physicians Who Treat Lung Cancer Get Sued? Chest 126 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Ahmed, B., Rasheed, T., Khan, M.A.U., Cho, S.J., Lee, S., Kim, TS. (2007). Rib Suppression for Enhancing Frontal Chest Radiographs Using Independent Component Analysis. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-71629-7_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71590-0
Online ISBN: 978-3-540-71629-7
eBook Packages: Computer ScienceComputer Science (R0)