Nothing Special   »   [go: up one dir, main page]

Skip to main content

A POD-Based Center Selection for RBF Neural Network in Time Series Prediction Problems

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4432))

Included in the following conference series:

Abstract

Center selection based on proper orthogonal decomposition (POD) is presented to select centers for the radial basis function (RBF) neural network in prediction of nonlinear time series. The proposed method takes advantages of the time-sequence feature in time series data and enables the center selection to be implemented in a parallel manner. Simulations on a benchmark problem and on two predictions of stock prices show that the presented method can be applied effectively to the prediction of nonlinear time series. Besides possessing higher precisions in training and testing, the proposed method has stronger generalization and noise resistance abilities, compared to several other popular center selection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chi, W., Zhou, B., Shi, A.G., Cai, F., Zhang, Y.S.: Radial basis function network for chaos series prediction. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 920–924. Springer, Heidelberg (2004)

    Google Scholar 

  2. Sheta, A.F., De Jong, K.: Time-series forecasting using GA-tuned radial basis functions. Information Sciences 133, 221–228 (2001)

    Article  MATH  Google Scholar 

  3. Rivas, V.M., Merelo, J.J., Castillo, P.A., Arenas, M.G., Castellano, J.G.: Evolving RBF neural networks for time-series forecasting with EvRBF. Information Sciences 165, 207–220 (2004)

    Article  MathSciNet  Google Scholar 

  4. Lee, D.W., Lee, J.: A novel three-phase algorithm for RBF neural network center selection. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 350–355. Springer, Heidelberg (2004)

    Google Scholar 

  5. Zhu, M.X., Zhang, D.L.: RBF neural network center selection based on Fisher ratio class separability measure. IEEE Transactions on Neural Networks 13(5), 1211–1217 (2002)

    Article  Google Scholar 

  6. Miyamoto, S.: Information clustering based on fuzzy multi-sets. Information Processing & Management 39(2), 195–213 (2003)

    Article  MATH  Google Scholar 

  7. Meng, L., Wu, Q.H., Yong, Z.Z.: A genetic hard c-means clustering algorithm. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms 9(3), 421–438 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Tarkov, M.S., Mun, Y., Choi, J.Y., Choi, H.I.: Mapping adaptive fuzzy Kohonen clustering network onto distributed image processing system. Parallel Computing 28(9), 1239–1256 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, P.T., Rad, A.B.: Adaptation and learning of a fuzzy system by nearest neighbor clustering. Fuzzy Sets and Systems 126(3), 353–366 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy C-means clustering algorithm. Pattern Recognition Letters 24(9-10), 1607–1612 (2003)

    Article  MATH  Google Scholar 

  11. Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern Recognition 35(10), 2267–2278 (2002)

    Article  MATH  Google Scholar 

  12. Oh, S.K., Pedrycz, W., Park, H.S.: Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation. Simulation Modeling Practice and Theory 11, 627–642 (2003)

    Article  Google Scholar 

  13. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Transactions on Neural Networks 2(2), 302–309 (1991)

    Article  Google Scholar 

  14. Chen, S., Member, S., Wu, Y., Luk, B.L.: Combined Genetic Algorithm Optimization and Regularized Orthogonal Least Squares Learning for Radial Basis Function Networks. IEEE Transactions on Neural Networks 10(5), 1239–1243 (1999)

    Article  Google Scholar 

  15. Wang, X.X., Brown, D.J.: Boosting orthogonal least squares regression. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 678–683. Springer, Heidelberg (2004)

    Google Scholar 

  16. Abido, M.A., Abdel-Magid, Y.L.: Adaptive tuning of power system stabilizers using radial basis function networks. Electric Power Systems Research 49, 21–29 (1999)

    Article  Google Scholar 

  17. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Current Science 78(7), 808–816 (2000)

    Google Scholar 

  18. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  19. Kunisch, K., Volkwen, S.: Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition. Journal of Optimization Theory and Applications 102(2), 345–371 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shvartsman, S.Y., Theodoropoulos, C., Rico-Martinez, R., Kevrekidis, I.G., Titi, E.S., Mountziaris, T.J.: Order reduction for nonlinear dynamic models of distributed reacting systems. Journal of Process Control 10, 177–184 (2000)

    Article  Google Scholar 

  21. Banks, H.T., Joyner, M.L., Wincheski, B., Winfree, W.P.: Nondestructive evaluation using a reduced-order computational methodology. Inverse Problems 16, 929–945 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its application—Part I: theory. Journal of Sound and Vibration 252, 527–544 (2002)

    Article  MathSciNet  Google Scholar 

  23. Wu, C.G., Liang, Y.C., Lin, W.Z., Lee, H.P., Lim, S.P.: A note on equivalence of proper orthogonal decomposition methods. Journal of Sound and Vibration 265, 1103–1110 (2003)

    Article  MathSciNet  Google Scholar 

  24. Azeez, M.F.A., Vakakis, A.F.: Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations. Journal of Sound and Vibration 240(5), 859–889 (2001)

    Article  Google Scholar 

  25. MRller, K.R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.N.: Using Support Vector Machines for Times Series Prediction. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods Support Vector Learning, pp. 243–253. MIT Press, Cambridge (1998)

    Google Scholar 

  26. Flake, G.W., Lawrence, S.: Efficient SVM regression training with SMO. Machine Learning 46, 271–290 (2002)

    Article  MATH  Google Scholar 

  27. Maguire, L.P., Roche, B., McGinnity, T.M., McDaid, L.J.: Predicting a chaotic time series using a fuzzy neural network. Information Sciences 112, 125–136 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zhang, W., Guo, X., Wang, C., Wu, C. (2007). A POD-Based Center Selection for RBF Neural Network in Time Series Prediction Problems. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics