Abstract
Center selection based on proper orthogonal decomposition (POD) is presented to select centers for the radial basis function (RBF) neural network in prediction of nonlinear time series. The proposed method takes advantages of the time-sequence feature in time series data and enables the center selection to be implemented in a parallel manner. Simulations on a benchmark problem and on two predictions of stock prices show that the presented method can be applied effectively to the prediction of nonlinear time series. Besides possessing higher precisions in training and testing, the proposed method has stronger generalization and noise resistance abilities, compared to several other popular center selection methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chi, W., Zhou, B., Shi, A.G., Cai, F., Zhang, Y.S.: Radial basis function network for chaos series prediction. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 920–924. Springer, Heidelberg (2004)
Sheta, A.F., De Jong, K.: Time-series forecasting using GA-tuned radial basis functions. Information Sciences 133, 221–228 (2001)
Rivas, V.M., Merelo, J.J., Castillo, P.A., Arenas, M.G., Castellano, J.G.: Evolving RBF neural networks for time-series forecasting with EvRBF. Information Sciences 165, 207–220 (2004)
Lee, D.W., Lee, J.: A novel three-phase algorithm for RBF neural network center selection. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 350–355. Springer, Heidelberg (2004)
Zhu, M.X., Zhang, D.L.: RBF neural network center selection based on Fisher ratio class separability measure. IEEE Transactions on Neural Networks 13(5), 1211–1217 (2002)
Miyamoto, S.: Information clustering based on fuzzy multi-sets. Information Processing & Management 39(2), 195–213 (2003)
Meng, L., Wu, Q.H., Yong, Z.Z.: A genetic hard c-means clustering algorithm. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms 9(3), 421–438 (2002)
Tarkov, M.S., Mun, Y., Choi, J.Y., Choi, H.I.: Mapping adaptive fuzzy Kohonen clustering network onto distributed image processing system. Parallel Computing 28(9), 1239–1256 (2002)
Chan, P.T., Rad, A.B.: Adaptation and learning of a fuzzy system by nearest neighbor clustering. Fuzzy Sets and Systems 126(3), 353–366 (2002)
Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy C-means clustering algorithm. Pattern Recognition Letters 24(9-10), 1607–1612 (2003)
Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern Recognition 35(10), 2267–2278 (2002)
Oh, S.K., Pedrycz, W., Park, H.S.: Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation. Simulation Modeling Practice and Theory 11, 627–642 (2003)
Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Transactions on Neural Networks 2(2), 302–309 (1991)
Chen, S., Member, S., Wu, Y., Luk, B.L.: Combined Genetic Algorithm Optimization and Regularized Orthogonal Least Squares Learning for Radial Basis Function Networks. IEEE Transactions on Neural Networks 10(5), 1239–1243 (1999)
Wang, X.X., Brown, D.J.: Boosting orthogonal least squares regression. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 678–683. Springer, Heidelberg (2004)
Abido, M.A., Abdel-Magid, Y.L.: Adaptive tuning of power system stabilizers using radial basis function networks. Electric Power Systems Research 49, 21–29 (1999)
Chatterjee, A.: An introduction to the proper orthogonal decomposition. Current Science 78(7), 808–816 (2000)
Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)
Kunisch, K., Volkwen, S.: Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition. Journal of Optimization Theory and Applications 102(2), 345–371 (1999)
Shvartsman, S.Y., Theodoropoulos, C., Rico-Martinez, R., Kevrekidis, I.G., Titi, E.S., Mountziaris, T.J.: Order reduction for nonlinear dynamic models of distributed reacting systems. Journal of Process Control 10, 177–184 (2000)
Banks, H.T., Joyner, M.L., Wincheski, B., Winfree, W.P.: Nondestructive evaluation using a reduced-order computational methodology. Inverse Problems 16, 929–945 (2000)
Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its application—Part I: theory. Journal of Sound and Vibration 252, 527–544 (2002)
Wu, C.G., Liang, Y.C., Lin, W.Z., Lee, H.P., Lim, S.P.: A note on equivalence of proper orthogonal decomposition methods. Journal of Sound and Vibration 265, 1103–1110 (2003)
Azeez, M.F.A., Vakakis, A.F.: Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations. Journal of Sound and Vibration 240(5), 859–889 (2001)
MRller, K.R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.N.: Using Support Vector Machines for Times Series Prediction. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods Support Vector Learning, pp. 243–253. MIT Press, Cambridge (1998)
Flake, G.W., Lawrence, S.: Efficient SVM regression training with SMO. Machine Learning 46, 271–290 (2002)
Maguire, L.P., Roche, B., McGinnity, T.M., McDaid, L.J.: Predicting a chaotic time series using a fuzzy neural network. Information Sciences 112, 125–136 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Zhang, W., Guo, X., Wang, C., Wu, C. (2007). A POD-Based Center Selection for RBF Neural Network in Time Series Prediction Problems. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-71629-7_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71590-0
Online ISBN: 978-3-540-71629-7
eBook Packages: Computer ScienceComputer Science (R0)