Abstract
This paper describes a new technique for automatically developing Artificial Neural Networks (ANNs) by means of an Evolutionary Computation (EC) tool, called Genetic Programming (GP). This paper also describes a practical application in the field of Data Mining. This application is the Iris flower classification problem. This problem has already been extensively studied with other techniques, and therefore this allows the comparison with other tools. Results show how this technique improves the results obtained with other techniques. Moreover, the obtained networks are simpler than the existing ones, with a lower number of hidden neurons and connections, and the additional advantage that there has been a discrimination of the input variables. As it is explained in the text, this variable discrimination gives new knowledge to the problem, since now it is possible to know which variables are important to achieve good results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, Englewood Cliffs (1999)
Rabuñal, J.R., Dorado, J. (eds.): Artificial Neural Networks in Real-Life Applications. Idea Group Inc., Hershey (2005)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics, 179–188 (1936)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Rivero, D., Rabuñal, J.R., Dorado, J., Pazos, A.: Time Series Forecast with Anticipation using Genetic Programming. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 968–975. Springer, Heidelberg (2005)
Bot, M.: Application of Genetic Programming to Induction of Linear Classification Trees. Final Term Project Report, Vrije Universiteit, Amsterdam (1999)
Rabuñal, J.R., Dorado, J., Puertas, J., Pazos, A., Santos, A., Rivero, D.: Prediction and Modelling of the Rainfall-Runoff Transformation of a Typical Urban Basin using ANN and GP. Applied Artificial Intelligence (2003)
Sutton, R.S.: Two problems with backpropagation and other steepest-descent learning procedure for networks. In: Proc. 8th Annual Conf. Cognitive Science Society, pp. 823–831. Lawrence Erlbaum, Hillsdale (1986)
Janson, D.J., Frenzel, J.F.: Training product unit neural networks with genetic algorithms. IEEE Expert 8, 26–33 (1993)
Greenwood, G.W.: Training partially recurrent neural networks using evolutionary strategies. IEEE Trans. Speech Audio Processing 5, 192–194 (1997)
Alba, E., Aldana, J.F., Troya, J.M.: Fully automatic ANN design: A genetic approach. In: Mira, J., Cabestany, J., Prieto, A.G. (eds.) IWANN 1993. LNCS, vol. 686, pp. 399–404. Springer, Heidelberg (1993)
Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)
Yao, X., Liu, Y.: Towards designing artificial neural networks by evolution. Appl. Math. Computation 91(1), 83–90 (1998)
Harp, S.A., Samad, T., Guha, A.: Toward the genetic synthesis of neural networks. In: Schafer, J.D. (ed.) Proc. 3rd Int. Conf. Genetic Algorithms and Their Applications, pp. 360–369. Morgan Kaufmann, San Mateo (1989)
Nolfi, S., Parisi, D.: Evolution of Artificial Neural Networks. In: Handbook of brain theory and neural networks, 2nd edn., pp. 418–421. MIT Press, Cambridge (2002)
Turney, P., Whitley, D., Anderson, R.: Special issue on the baldwinian effect. Evolutionary Computation 4(3), 213–329 (1996)
Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2), 199–200 (1995)
Mertz, C.J., Murphy, P.M.: UCI repository of machine learning databases (2002), http://www-old.ics.uci.edu/pub/machine-learning-databases
Cantú-Paz, E., Kamath, C.: An Empirical Comparison of Combinations of Evolutionary Algorithms and Neural Networks for Classification Problems. IEEE Transactions on systems, Man and Cybernetics – Part B: Cybernetics, 915–927 (2005)
Herrera, F., Hervás, C., Otero, J., Sánchez, L.: Un estudio empírico preliminar sobre los tests estadísticos más habituales en el aprendizaje automático. In: Giraldez, R., Riquelme, J.C., Aguilar, J.S. (eds.) Tendencias de la Minería de Datos en España, Red Española de Minería de Datos y Aprendizaje, pp. 403–412 (2004)
Gruau, F.: Genetic Micro Programming of Neural Networks. In: Kinnear, K. (ed.) Advances in Genetic Programming, pp. 495–518. MIT Press, Cambridge (1994)
Duch, W., Adamczak, R., Grabczewski, K.: A new methodology of extraction, optimisation and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 11(2) (2000)
Martinez, A., Goddard, J.: Definición de una red neuronal para clasificación por medio de un programa evolutivo. Mexican Journal of Biomedical Engineering 22, 4–11 (2001)
Rabuñal, J.R.: Entrenamiento de redes de neuronas artificiales mediante algoritmos genéticos. Graduate Thesis , University of A Coruña, Spain (1999)
Rivero, D., Dorado, J., Rabuñal, J., Pazos, A.: Using Genetic Programmning for Artificial Neural Network Development and Simplification. In: Proceedings of the 5th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics (CIMMACS’06), pp. 65–71. WSEAS Press (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Rivero, D., Rabuñal, J., Dorado, J., Pazos, A. (2007). Automatic Design of ANNs by Means of GP for Data Mining Tasks: Iris Flower Classification Problem. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71618-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-71618-1_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71589-4
Online ISBN: 978-3-540-71618-1
eBook Packages: Computer ScienceComputer Science (R0)