Nothing Special   »   [go: up one dir, main page]

Skip to main content

Genetic Programming for Proactive Aggregation Protocols

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4431))

Included in the following conference series:

Abstract

We present an approach for automated generation of proactive aggregation protocols using Genetic Programming. First a short introduction into aggregation and proactive protocols is given. We then show how proactive aggregation protocols can be specified abstractly. To be able to use Genetic Programming to derive such protocol specifications, we describe a simulation based fitness assignment method. We have applied our approach successfully to the derivation of aggregation protocols. Experimental results are presented that were obtained using our own Distributed Genetic Programming Framework. The results are very encouraging and demonstrate clearly the utility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Renesse, R.: The importance of aggregation. In: Schiper, A., Shvartsman, M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed Computing. LNCS, vol. 2584, pp. 87–92. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Chong, C.-Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE 91(8), 1247–1256 (2003)

    Article  Google Scholar 

  3. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(1), 219–252 (2005)

    Article  Google Scholar 

  4. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay networks. In: Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04), Tokyo, Japan, Mar. 2004, pp. 102–109. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  5. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information dissemination in wireless sensor networks. In: MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, Seattle, Washington, United States, pp. 174–185. ACM Press, New York (1999)

    Chapter  Google Scholar 

  6. El-Fakih, K., Yamaguchi, H., Bochmann, G., Higashino, T.: A method and a genetic algorithm for deriving protocols for distributed applications with minimum communication cost. In: Proceedings of Eleventh IASTED International Conference on Parallel and Distributed Computing and Systems, Boston, USA (Nov. 1999)

    Google Scholar 

  7. Yamamoto, L., Tschudin, C.: Genetic evolution of protocol implementations and configurations. In: IFIP/IEEE International workshop on Self-Managed Systems and Services (SelfMan 2005), Nice, France (2005)

    Google Scholar 

  8. Comellas, F., Giménez, G.: Genetic programming to design communication algorithms for parallel architectures. Parallel Processing Letters 8(4), 549–560 (1998)

    Article  Google Scholar 

  9. de Miranda, M.N., Lima, R.N.B., Pedroza, A.C.P., de Mesquita, A.C.: HW/SW codesign of protocols based on performance optimization using genetic algorithms. Technical report (2001)

    Google Scholar 

  10. Weise, T., Geihs, K.: DGPF - an adaptable framework for distributed multi-objective search algorithms applied to the genetic programming of sensor networks. In: Šilc, J., Filipič, B. (eds.) Proceedings of the Second International Conference on Bioinspired Optimization Methods and their Application, BIOMA 2006, Oct. 2006, pp. 157–166. Jožef Stefan Institute, Ljubljana, Slovenia, Slovenia (2006)

    Google Scholar 

  11. Koza, J.R.: Genetic Programming, On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  12. Raidl, G.R.: A hybrid GP approach for numerically robust symbolic regression. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp. 323–328. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  13. Distributed Genetic Programming Framework. SourceForge project, see http://sourceforge.net/projects/DGPF and http://DGPF.sourceforge.net/

  14. Geihs, K., Weise, T.: Genetic programming techniques for sensor networks. In: Proceedings of 5. GI/ITG KuVS Fachgespräch ”Drahtlose Sensornetze”, Jul. 2006, pp. 21–25 (2006)

    Google Scholar 

  15. Weise, T.: Genetic programming for sensor networks. Technical report (Jan. 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Weise, T., Geihs, K., Baer, P.A. (2007). Genetic Programming for Proactive Aggregation Protocols. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71618-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71618-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71589-4

  • Online ISBN: 978-3-540-71618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics