Abstract
We present an approach for automated generation of proactive aggregation protocols using Genetic Programming. First a short introduction into aggregation and proactive protocols is given. We then show how proactive aggregation protocols can be specified abstractly. To be able to use Genetic Programming to derive such protocol specifications, we describe a simulation based fitness assignment method. We have applied our approach successfully to the derivation of aggregation protocols. Experimental results are presented that were obtained using our own Distributed Genetic Programming Framework. The results are very encouraging and demonstrate clearly the utility of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van Renesse, R.: The importance of aggregation. In: Schiper, A., Shvartsman, M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed Computing. LNCS, vol. 2584, pp. 87–92. Springer, Heidelberg (2003)
Chong, C.-Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE 91(8), 1247–1256 (2003)
Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(1), 219–252 (2005)
Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay networks. In: Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04), Tokyo, Japan, Mar. 2004, pp. 102–109. IEEE Computer Society Press, Los Alamitos (2004)
Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information dissemination in wireless sensor networks. In: MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, Seattle, Washington, United States, pp. 174–185. ACM Press, New York (1999)
El-Fakih, K., Yamaguchi, H., Bochmann, G., Higashino, T.: A method and a genetic algorithm for deriving protocols for distributed applications with minimum communication cost. In: Proceedings of Eleventh IASTED International Conference on Parallel and Distributed Computing and Systems, Boston, USA (Nov. 1999)
Yamamoto, L., Tschudin, C.: Genetic evolution of protocol implementations and configurations. In: IFIP/IEEE International workshop on Self-Managed Systems and Services (SelfMan 2005), Nice, France (2005)
Comellas, F., Giménez, G.: Genetic programming to design communication algorithms for parallel architectures. Parallel Processing Letters 8(4), 549–560 (1998)
de Miranda, M.N., Lima, R.N.B., Pedroza, A.C.P., de Mesquita, A.C.: HW/SW codesign of protocols based on performance optimization using genetic algorithms. Technical report (2001)
Weise, T., Geihs, K.: DGPF - an adaptable framework for distributed multi-objective search algorithms applied to the genetic programming of sensor networks. In: Šilc, J., Filipič, B. (eds.) Proceedings of the Second International Conference on Bioinspired Optimization Methods and their Application, BIOMA 2006, Oct. 2006, pp. 157–166. Jožef Stefan Institute, Ljubljana, Slovenia, Slovenia (2006)
Koza, J.R.: Genetic Programming, On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Raidl, G.R.: A hybrid GP approach for numerically robust symbolic regression. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp. 323–328. Morgan Kaufmann, San Francisco (1998)
Distributed Genetic Programming Framework. SourceForge project, see http://sourceforge.net/projects/DGPF and http://DGPF.sourceforge.net/
Geihs, K., Weise, T.: Genetic programming techniques for sensor networks. In: Proceedings of 5. GI/ITG KuVS Fachgespräch ”Drahtlose Sensornetze”, Jul. 2006, pp. 21–25 (2006)
Weise, T.: Genetic programming for sensor networks. Technical report (Jan. 2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Weise, T., Geihs, K., Baer, P.A. (2007). Genetic Programming for Proactive Aggregation Protocols. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71618-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-71618-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71589-4
Online ISBN: 978-3-540-71618-1
eBook Packages: Computer ScienceComputer Science (R0)