Abstract
Embedded Cartesian Genetic Programming (ECGP) is an extension of Cartesian Genetic Programming (CGP) capable of acquiring, evolving and re-using partial solutions. In this paper, we apply for the first time CGP and ECGP to the ones-max and order-3 deceptive problems, which are normally associated with Genetic Algorithms. Our approach uses CGP and ECGP to evolve a sequence of commands for a tape-head, which produces an arbitrary length binary string on a piece of tape. Computational effort figures are calculated for CGP and ECGP and our results compare favourably with those of Genetic Algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angeline, P.J., Pollack, J.: Evolutionary module acquisition. In: Proc. of the 2nd Annual Conference on Evolutionary Programming, pp. 154–163 (1993)
Walker, J.A., Miller, J.F.: Investigating the performance of module acquisition in cartesian genetic programming. In: Proc. of GECCO, vol. 2, pp. 1649–1656. ACM, New York (2005)
Walker, J.A., Miller, J.F.: Embedded cartesian genetic programming and the lawnmower and hierarchical-if-and-only-if problems. In: Proc. of GECCO, ACM, New York (2006)
Ackley, D.H.: A connectionist Machine for Genetic Hillclimbing. Kluwer, Dordrecht (1987)
Tuson, A., Ross, P.: Adapting operator settings in genetic algorithms. Evolutionary Computation 6(2) (1998)
Goldberg, D.E., Deb, K., Korb, B.: Messy genetic algortihms: Motivation, analysis and first results. Complex Systems 3(5) (1989)
Yu, T., Miller, J.F.: The role of neutral and adaptive mutation in an evolutionary search on the onemax problem. In: Late Breaking Papers at GECCO, pp. 512–519. AAAI, Menlo Park (2002)
Ryan, C., Nicolau, M., O’Neill, M.: Genetic algorithms uing grammatical evolution. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 278–287. Springer, Heidelberg (2002)
Nicolau, M., Ryan, C.: Linkgauge: Tackiling hard deceptive problems with a new linkage learning genetic algortihm. In: Proc. of GECCO, pp. 488–494. AAAI, Menlo Park (2002)
O’Neill, M., Brabazon, A.: mGGA:The meta-grammar genetic algorithm. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 311–320. Springer, Heidelberg (2005)
Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Walker, J.A., Miller, J.F. (2007). Changing the Genospace: Solving GA Problems with Cartesian Genetic Programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds) Genetic Programming. EuroGP 2007. Lecture Notes in Computer Science, vol 4445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71605-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-71605-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71602-0
Online ISBN: 978-3-540-71605-1
eBook Packages: Computer ScienceComputer Science (R0)