Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model-Based Feature Extraction for Gait Analysis and Recognition

  • Conference paper
Computer Vision/Computer Graphics Collaboration Techniques (MIRAGE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4418))

Abstract

Human motion analysis has received a great attention from researchers in the last decade due to its potential use in different applications. We propose a new approach to extract human joints (vertex positions) using a model-based method. Motion templates describing the motion of the joints as derived by gait analysis, are parametrized using the elliptic Fourier descriptors. The heel strike data is exploited to reduce the dimensionality of the parametric models. People walk normal to the viewing plane, as major gait information is available in a sagittal view. The ankle, knee and hip joints are successfully extracted with high accuracy for indoor and outdoor data. In this way, we have established a baseline analysis which can be deployed in recognition, marker-less analysis and other areas. The experimental results confirmed the robustness of the proposed method to recognize walking subjects with a correct classification rate of %92.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, L.A., Hu, W.M., Tan, T.N.: Recent developments in human motion analysis. Pattern Recognition 36(3), 585–601 (2003)

    Article  Google Scholar 

  2. Aggarwal, J.K., et al.: Nonrigid motion analysis: Articulated and elastic motion. CVIU 70(2), 142–156 (1998)

    Google Scholar 

  3. Yoo, J.H., Nixon, M.S., Harris, C.J.: Extraction and description of moving human body by periodic motion analysis. In: Proc. ISCA 17th International Conference on Computers and Their Applications, pp. 110–113 (2002)

    Google Scholar 

  4. Akita, K.: Image sequence analysis of real world human motion. Pattern Recognition 17(1), 73–83 (1984)

    Article  Google Scholar 

  5. Guo, Y., Xu, G., Tsuji, S.: Understanding human motion patterns. In: Proc. the 12th IAPR International Conference on Pattern Recognition, vol. 2, pp. 325–329 (1994)

    Google Scholar 

  6. Rohr, K.: Towards model-based recognition of human movements in image sequences. CVGIP: IU 74(1), 94–115 (1994)

    Article  Google Scholar 

  7. Karaulova, I.A., Hall, P.M., Marshall, A.D.: A hierarchical model of dynamics for tracking people with a single video camera. In: Proc. of the 11th BMVC, Sept. 2000, pp. 262–352 (2000)

    Google Scholar 

  8. Huazhong, N., et al.: People tracking based on motion model and motion constraints with automatic initialization. Pattern Recognition 37(7), 1423–1440 (2004)

    Article  Google Scholar 

  9. Shio, A., Sklansky, J.: Segmentation of people in motion. In: IEEE Workshop on Visual Motion, vol. 2, Octobor 1991, pp. 325–332. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

  10. Kurakake, S., Nevatia, R.: Description and tracking of moving articulated objects. In: Proc. 11th IAPR ICPR, Oct. 1992, vol. 1, pp. 491–495 (1992)

    Google Scholar 

  11. Cunado, D., Nixon, M.S., Carter, J.N.: Automatic Extraction and Description of Human Gait Models for Recognition Purposes. Computer Vision and Image Understanding 90(1), 1–41 (2003)

    Article  Google Scholar 

  12. Grant, M.G., Nixon, M.S., Lewis, P.H.: Extracting moving shapes by evidence gathering. Pattern Recognition 35(5), 1099–1114 (2002)

    Article  MATH  Google Scholar 

  13. Granlund, G.H.: Fourier preprocessing for hand print character recognition. IEEE T-Comp 21, 195–201 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Aguado, A.S., Nixon, M.S., Montiel, M.E.: Parameterising arbitrary shapes via fourier descriptors for evidence-gathering extraction. CVGIP: IU 2, 547–551 (1998)

    Google Scholar 

  15. Leavers, V.F.: Which Hough transform?. CVGIP: Image Understanding 58(2), 250–264 (1993)

    Article  Google Scholar 

  16. Aguado, A.S., Nixon, M.S., Montiel, M.E.: Parameterizing Arbitrary Shapes via Fourier Descriptors for Evidence-Gathering Extraction. CVIU 69(2), 202–221 (1998)

    Google Scholar 

  17. Cutler, R., Davis, L.S.: Robust real-time periodic motion detection, analysis, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 781–796 (2003)

    Article  Google Scholar 

  18. Bouchrika, I., Nixon, M.S.: People Detection and Recognition using Gait for Automated Visual Surveillance. In: IEE International Symposium on Imaging for Crime Detection and Prevention (2006)

    Google Scholar 

  19. Fujiyoshi, H., Lipton, A.J., Kanade, T.: Real-time human motion analysis by image skeletonization. IEICE Trans. on Information and System, 113–120 (2004)

    Google Scholar 

  20. Pheasant, S.T.: Body space: Anthropometry, Ergonomics and Design. Taylor & Francis, Abington (1988)

    Google Scholar 

  21. Shutler, J.D., et al.: On a large sequence-based human gait database. In: Proceedings of Recent Advances in Soft Computing, Nottingham, UK, pp. 66–71 (2002)

    Google Scholar 

  22. Winter, D.A.: The Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley, Chichester (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

André Gagalowicz Wilfried Philips

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bouchrika, I., Nixon, M.S. (2007). Model-Based Feature Extraction for Gait Analysis and Recognition. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics Collaboration Techniques. MIRAGE 2007. Lecture Notes in Computer Science, vol 4418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71457-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71457-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71456-9

  • Online ISBN: 978-3-540-71457-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics