Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rough Communication of Dynamic Concept

  • Conference paper
Fuzzy Information and Engineering

Part of the book series: Advances in Soft Computing ((AINSC,volume 40))

  • 778 Accesses

Abstract

In rough communication, each agent taking part in rough communication may give new judge about the dynamic concept X. And this new information may be important. How to study the rough communication which concerns the useful subjective information is very important. The definition of rough communication of dynamic concept based on α - generation of two direction assistant sets is proposed in the paper. An example is presented to illustrate the reasonableness of the new definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  Google Scholar 

  2. Pawlak, Z., Slowinski, R.: Rough set approach to multi-attribute decision analysis. European Journal of Operational Research 72, 443–459 (1994)

    Article  MATH  Google Scholar 

  3. Hashemi, R.R., et al.: A hybrid intelligent system for predicting bank holding structures. European Journal of Operational Research 109, 390–402 (1998)

    Article  MATH  Google Scholar 

  4. Dimitras, A.I., et al.: Business failure prediction using rough sets. European Journal of Operational Research 114, 263–280 (1999)

    Article  MATH  Google Scholar 

  5. Pawlak, Z.: Rough sets, Decision algorithm and Bayes’ theorem. European Journal of Operational Research 136, 181–189 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Asharaf, S., Murty, M.N.: An adaptive rough fuzzy single pass algorithm for clustering large data sets. Pattern Recognition 36, 3015–3018 (2003)

    Article  MATH  Google Scholar 

  7. Mousavi, A., Jabedar-Maralani, P.: Double-faced rough sets and rough communication. Information Sciences 148, 41–53 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang, H., Li, X., Shi, K.: Information Measure in Rough Communication. An International Journal: Advances in Systems Science and Applications 5(4), 638–643 (2005)

    Google Scholar 

  9. Guan, Y., Wang, H., Yao, B.: Analysis of the Concept Translation Result in Rough Communication. In: Proceedings of 2006 International Conference on Artificial Intelligence, pp. 381–384 (2006)

    Google Scholar 

  10. Wang, H., Zhao, S.: A new definition form of rough communication (in Chinese). Computer science 33(9), 189–190 (2006)

    MathSciNet  Google Scholar 

  11. Wang, H., Guan, Y., Shi, K.: Simulated annealing algorithm for globaloptimal translation sequence in rough communication (in Chinese). Systems engineering-theory and practice 26(9), 118–122 (2006)

    Google Scholar 

  12. Wang, H., Chen, X., Shi, K.: Simulated annealing algorithm for result Optimal translation sequence in rough communication (in Chinese). Fuzzy systems and mathematics 20(5), 125–130 (2006)

    MathSciNet  Google Scholar 

  13. Wang, H., Xue, P., Shi, K.: The problem of rough communication of fuzzy concept. In: The 11th Joint International Computer Conference, pp. 674–677 (2005)

    Google Scholar 

  14. Wang, H., et al.: Fuzzy rough communication and optimization problem of its translation sequence. In: IEEE Proceedings of the fifth International Conference on Machine Learning and Cybernetics, pp. 2268–2273. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  15. Shi, K.: S-rough sets and its applications in diagnosis-recognition for disease. In: IEEE Proceedings of the first International Conference on Machine Learning and Cybernetics, pp. 50–54. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  16. Shi, K., Chang, T.C.: Two direction S-rough sets. International Journal of Fuzzy mathematics 2, 335–349 (2005)

    Google Scholar 

  17. Wang, H., Hu, H.: α – generation and α – generation theorem of assistant set of S-rough sets (in Chinese). Journal of Shandong University (natural science) 39(1), 9–14 (2004)

    Google Scholar 

  18. Wang, H., Hu, H.: α – generation granulation degree of assistant set of S- rough sets (in Chinese). Journal of Shandong University (natural science) 39(3), 32–36 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bing-Yuan Cao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, HK., Yao, JJ., Xue, PJ., Shi, KQ. (2007). Rough Communication of Dynamic Concept. In: Cao, BY. (eds) Fuzzy Information and Engineering. Advances in Soft Computing, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71441-5_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71441-5_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71440-8

  • Online ISBN: 978-3-540-71441-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics