Abstract
In this paper the notion of fuzzy QS-subalgebra and fuzzy topological QS-algebras are introduced. We state and prove some theorem in fuzzy QS-subalgebras and level subalgebras. Finally the Foster’s results on homomorphic images and inverse images in fuzzy topological QS-algebras are studied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahn, S.S., Kim, H.S.: On QS-algebras. J. of the Chungcheong Math. Soc. 12, 1–7 (1999)
Foster, D.H.: Fuzzy topological groups. J. Math. Anal. Appl. 67, 549–564 (1979)
Hu, Q.P., Li, X.: On BCH-algebras. Mathematics Seminar Notes 11, 313–320 (1983)
Hu, Q.P., Li, X.: On proper BCH-algebras. Math. Japanica 30, 659–661 (1985)
Imai, Y., Iseki, K.: On axiom systems of propositional calculi. XIV Proc. Japan Academy 42, 19–22 (1966)
Iseki, K., Tanaka, S.: An introduction to the theory of BCK-algebras. Math. Japanica 23, 1–26 (1978)
Iseki, K.: On BCI-algebras. Mathematics Seminar Notes 8, 125–130 (1980)
Jun, Y.B., Roh, E.H.: On the BCI − G part of BCI-algebras. Math. Japanica 38, 697–702 (1993)
Neggers, J., Ahn, S.S., Kim, H.S.: On Q-algebras. Int. J. Math. & Math. Sci. 27, 749–757 (2001)
Rosenfeld, A.: Fuzzy Groups. J. Math. Anal. Appl. 35, 512–517 (1971)
Zadeh, L.A.: Fuzzy Sets. Inform. Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Saeid, A.B. (2007). Fuzzy Set Theory Applied to QS-Algebras. In: Cao, BY. (eds) Fuzzy Information and Engineering. Advances in Soft Computing, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71441-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-71441-5_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71440-8
Online ISBN: 978-3-540-71441-5
eBook Packages: EngineeringEngineering (R0)