Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Set Theory Applied to QS-Algebras

  • Conference paper
Fuzzy Information and Engineering

Part of the book series: Advances in Soft Computing ((AINSC,volume 40))

  • 794 Accesses

Abstract

In this paper the notion of fuzzy QS-subalgebra and fuzzy topological QS-algebras are introduced. We state and prove some theorem in fuzzy QS-subalgebras and level subalgebras. Finally the Foster’s results on homomorphic images and inverse images in fuzzy topological QS-algebras are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahn, S.S., Kim, H.S.: On QS-algebras. J. of the Chungcheong Math. Soc. 12, 1–7 (1999)

    Google Scholar 

  2. Foster, D.H.: Fuzzy topological groups. J. Math. Anal. Appl. 67, 549–564 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hu, Q.P., Li, X.: On BCH-algebras. Mathematics Seminar Notes 11, 313–320 (1983)

    MATH  MathSciNet  Google Scholar 

  4. Hu, Q.P., Li, X.: On proper BCH-algebras. Math. Japanica 30, 659–661 (1985)

    MATH  MathSciNet  Google Scholar 

  5. Imai, Y., Iseki, K.: On axiom systems of propositional calculi. XIV Proc. Japan Academy 42, 19–22 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  6. Iseki, K., Tanaka, S.: An introduction to the theory of BCK-algebras. Math. Japanica 23, 1–26 (1978)

    MATH  MathSciNet  Google Scholar 

  7. Iseki, K.: On BCI-algebras. Mathematics Seminar Notes 8, 125–130 (1980)

    MATH  MathSciNet  Google Scholar 

  8. Jun, Y.B., Roh, E.H.: On the BCI − G part of BCI-algebras. Math. Japanica 38, 697–702 (1993)

    MATH  MathSciNet  Google Scholar 

  9. Neggers, J., Ahn, S.S., Kim, H.S.: On Q-algebras. Int. J. Math. & Math. Sci. 27, 749–757 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rosenfeld, A.: Fuzzy Groups. J. Math. Anal. Appl. 35, 512–517 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zadeh, L.A.: Fuzzy Sets. Inform. Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bing-Yuan Cao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saeid, A.B. (2007). Fuzzy Set Theory Applied to QS-Algebras. In: Cao, BY. (eds) Fuzzy Information and Engineering. Advances in Soft Computing, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71441-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71441-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71440-8

  • Online ISBN: 978-3-540-71441-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics