Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Vague Subring and Its Structure

  • Conference paper
Fuzzy Information and Engineering

Part of the book series: Advances in Soft Computing ((AINSC,volume 40))

  • 802 Accesses

Abstract

Vague ring and vague ideal based on vague binary operation are defined, and some properties of them are got. At last, we give the relationships between vague ring and classical ring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. I35, 512–517 (1971)

    Article  MathSciNet  Google Scholar 

  3. Demirci, M.: Fuzzy functions and their fundamental properties. Fuzzy Sets and Systems 106(2), 239–246 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sasaki, M.: Fuzzy function. Fuzzy Sets and Systems 55(3), 295–301 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demirci, M.: Vague Groups. Journal of Mathematical Analysis and Applications 230(1), 142–156 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demirci, M.: A theory of vague lattices based on many-valued equivalence relations-I: general representation results. Fuzzy Sets and Systems 151(3), 437–472 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demirci, M.: A theory of vague lattices based on many-valued equivalence relations-II: complete lattices. Fuzzy Sets and Systems 151(3), 473–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mordeson, J.: Fuzzy Commutative Algebra. World Scientific, London (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bing-Yuan Cao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, Q., Zhang, D., Ma, Z. (2007). On Vague Subring and Its Structure. In: Cao, BY. (eds) Fuzzy Information and Engineering. Advances in Soft Computing, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71441-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71441-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71440-8

  • Online ISBN: 978-3-540-71441-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics