Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Morphological Approach for Granulometry with Application to Image Denoising

  • Conference paper
Fuzzy Information and Engineering

Part of the book series: Advances in Soft Computing ((AINSC,volume 40))

  • 804 Accesses

Abstract

Granulometry formalizes the intuitive geometric notion of a sieving process. It was initially set oriented to extract size distribution from binary images, and has been extended to function operators to analyze and extract texture features in grey-scale images. In this paper, we study and establish granulometry with respect to grey-scale morphological operators based on fuzzy logic. We discuss applications of the granulometry in image analysis. A numerical experiment shows that granulometry is a powerful tool for image denoising for image analysis and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balagurunathan, Y., Dougherty, E.R.: Granulometric parametric estimation for the random boolean model using optimal linear filters and optimal structuring elements. Pattern Recognition Letters 24, 283–293 (2003)

    Article  Google Scholar 

  2. Braga-Neto, U.M., Goutsias, J.: Grayscale level connectivity: Theory and applications. IEEE Transactions on Image Processing 13, 1567–1580 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Dougherty, E.R.: Gray-scale morphological granulometric texture classification. Optical Engineering 33, 2713–2722 (1994)

    Article  Google Scholar 

  4. de Moraes, R.M., Banon, G.J., Sandri, S.A.: Fuzzy expert systems architecture for image classification using mathematical morphology operators. Information Sciences 142, 7–21 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deng, T.Q., Heijmans, H.: Grey-scale morphology based on fuzzy logic. Journal of Mathematical Imaging and Vision 16, 155–171 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Goutsias, J., Heijmans, H.: Fundamenta morphologicae mathematicae. Fundamenta Informaticae 41, 1–31 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Hanbury, A.G., Serra, J.: Morphological operators on the unit circle. IEEE Transactions on Image Processing 10, 1842–1850 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Heijmans, H.: Morphological image operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  9. Matheron, G.: Random sets and integral geometry. John Wiley & Sons, New York (1975)

    MATH  Google Scholar 

  10. Serra, J.: Image analysis and mathematical morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  11. Serra, J.: A lattice approach to image segmentation. Journal of Mathematical Imaging and Vision 24, 83–130 (2006)

    Article  MathSciNet  Google Scholar 

  12. Mukherjee, D.P., Acton, S.T.: Scale space classification using area morphology. IEEE Transactions on Image Processing 9, 623–635 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bing-Yuan Cao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, T., Chen, Y. (2007). A Morphological Approach for Granulometry with Application to Image Denoising. In: Cao, BY. (eds) Fuzzy Information and Engineering. Advances in Soft Computing, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71441-5_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71441-5_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71440-8

  • Online ISBN: 978-3-540-71441-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics