Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automated Implicit Computational Complexity Analysis (System Description)

  • Conference paper
Automated Reasoning (IJCAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5195))

Included in the following conference series:

  • 959 Accesses

Abstract

Recent studies have provided many characterisations of the class of polynomial time computable functions through term rewriting techniques. In this paper we describe a (fully automatic and command-line based) system that implements the majority of these techniques and present experimental findings to simplify comparisons.

This research is supported by FWF (Austrian Science Fund) project P20133.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marion, J.Y., Moyen, J.Y.: Efficient first order functional program interpreter with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 25–42. Springer, Heidelberg (2000)

    Google Scholar 

  2. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. JFP 11(1), 33–53 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Marion, J.Y.: Analysing the implicit complexity of programs. IC 183, 2–18 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Marion, J.Y., Péchoux, R.: Resource analysis by sup-interpretation. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 163–176. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Marion, J.Y., Péchoux, R.: Quasi-friendly sup-interpretations. CoRR abs/cs/0608020 (2006)

    Google Scholar 

  6. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Proc. 9th FLOPS. LNCS, vol. 4989, pp. 130–146. Springer, Heidelberg (2008)

    Google Scholar 

  7. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-intepretations and small space bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 150–164. Springer, Heidelberg (2005)

    Google Scholar 

  8. Bonfante, G., Marion, J.Y., Péchoux, R.: Quasi-interpretation synthesis by decomposition. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 410–424. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  10. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg (1989)

    Google Scholar 

  11. Steinbach, J.: Generating polynomial orderings. IPL 49, 85–93 (1994)

    Article  MATH  Google Scholar 

  12. Zantema, H.: Termination of term rewriting by semantic labelling. FI 24, 89–105 (1995)

    MATH  MathSciNet  Google Scholar 

  13. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. In: Proc. 19th RTA 2008. LNCS, vol. 5117 (to appear, 2008)

    Google Scholar 

  14. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termination using polynomial interpretations. JAR 34(4), 325–363 (2005)

    Article  MATH  Google Scholar 

  15. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving termination using recursive path orders and SAT solving. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Steinbach, J., Kühler, U.: Check your ordering - termination proofs and open problems. Technical Report SR-90-25, University of Kaiserslautern (1990)

    Google Scholar 

  18. Dershowitz, N.: 33 examples of termination. In: Term Rewriting, French Spring School of Theoretical Computer Science, Advanced Course, pp. 16–26. Springer, Heidelberg (1995)

    Google Scholar 

  19. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical Report AIB-09-2001, RWTH Aachen (2001)

    Google Scholar 

  20. Moser, G., Schnabl, A.: Proving quadratic derivational complexities using context dependent interpretations. In: Proc. 19th RTA 2008. LNCS, vol. 5117 (to appear, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alessandro Armando Peter Baumgartner Gilles Dowek

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avanzini, M., Moser, G., Schnabl, A. (2008). Automated Implicit Computational Complexity Analysis (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds) Automated Reasoning. IJCAR 2008. Lecture Notes in Computer Science(), vol 5195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71070-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71070-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71069-1

  • Online ISBN: 978-3-540-71070-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics