Nothing Special   »   [go: up one dir, main page]

Skip to main content

Numerical Analysis of Blow-Up Weak Solutions to Semilinear Hyperbolic Equations

  • Conference paper
Numerical Methods and Applications (NMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4310))

Included in the following conference series:

  • 2274 Accesses

Abstract

We study numerical approximations of weak solutions of hyperbolic problems with discontinuous coefficients and nonlinear source terms in the equation. By a semidiscretization of a Dirichlet problem in the space variable we obtain a system of ordinary differential equations (SODEs), which is expected to be an approximation of the original problem. We show at conditions similar to those for the hyperbolic problem, that the solution of the SODEs blows up. Under certain assumptions, we also prove that the numerical blow-up time converges to the real blow-up time when the mesh size goes to zero. Numerical experiments are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandle, C., Brunner, H.: Blow-up in diffusion equations: a survey. J. Comp. Appl. Math. 977, 3–22 (1998)

    Article  MathSciNet  Google Scholar 

  2. Carpio, A., Duro, G.: Instability and collapse in discrete wave equations. Comp. Meth. in Appl. Math. 3(5), 223–241 (2005)

    MathSciNet  Google Scholar 

  3. Dimova, S., et al.: Numerical analysis of radially non-symmetric blow-up solutions of a nonlinear parabolic problem. J. Comp. Appl. Math. 97, 81–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ferreira, R., Groisman, P., Rossi, J.: Numerical blow-up for the porous medium equation with a source. Num. Meth. P.D.E. 20(4), 552–575 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Galaktionov, V., Pohozaev, S.: Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equatioms. (In press)

    Google Scholar 

  6. Jovanovic, B.: Finite difference Method for Boundary Value Problems with Weak Solutions. Posebna izdanja Mat. Instituta 16, Belgrade (1993)

    Google Scholar 

  7. Jovanovic, B., Vulkov, L.: Analysis of semidiscrete approximations of blow-up weak solutions to semilinear parabolic equations. (Submitted)

    Google Scholar 

  8. Koleva, M., Vulkov, L.: On the blow-up finite difference solutions to the heat-diffusion equation with semilinear dynamical boundary conditions. Appl. Math. Comput. 161, 69–91 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Koleva, M., Vulkov, L.: Blow-Up of continuous and semidiscrete solutions to elliptic equations with semilinear dynamical boundary conditions of parabolic type. J. Comp. Appl. Math, available in online 18 April 2006

    Google Scholar 

  10. Levine, H.: Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients. Math. Ann. 214, 205–220 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nakagawa, T.: Blowing up of a finite difference solution to \(u_t=u_{xx}+u^2\). Appl. Math. & Optimization 2(4), 337–350 (1976)

    Article  MathSciNet  Google Scholar 

  12. Samarskii, A.: Theory of Difference Schemes. Marcel Dekker, New York (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Todor Boyanov Stefka Dimova Krassimir Georgiev Geno Nikolov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Jovanovic, B.S., Koleva, M.N., Vulkov, L.G. (2007). Numerical Analysis of Blow-Up Weak Solutions to Semilinear Hyperbolic Equations. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70942-8_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70940-4

  • Online ISBN: 978-3-540-70942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics