Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Differential Evolution Algorithm Based on ε-Domination and Orthogonal Design Method for Multiobjective Optimization

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4403))

Included in the following conference series:

Abstract

To find solutions as close to the Pareto front as possible, and to make them as diverse as possible in the obtained non-dominated front is a challenging task for any multiobjective optimization algorithm.ε-dominance is a concept which can make genetic algorithm obtain a good distribution of Pareto-optimal solutions and has low computational time complexity,and the orthogonal design method can generate an initial population of points that are scattered uniformly over the feasible solution space.In this paper, combining ε-dominance and orthogonal design method, we propose a novel Differential Evolution (DE) algorithm for multiobjective optimization .Experiments on a number of two- and three-objective test problems of diverse complexities show that our approach is able to obtain a good distribution with a small computational time in all cases. Compared with several other state-of-the-art evolutionary algorithms, it achieves not only comparable results in terms of convergence and diversity metrics, but also a considerable reduction of the computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA”CII. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  2. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (2001)

    Google Scholar 

  3. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Ph. D. thesis, Vanderbilt University. Unpublished (1984)

    Google Scholar 

  4. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99–107 (1992)

    Article  Google Scholar 

  5. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423 (1993)

    Google Scholar 

  6. Horn, J., Nafpliotis, N.: Multiobjective optimization using the niched pareto genetic algorithm. IlliGAL Report 93005, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana, Champaign (1993)

    Google Scholar 

  7. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  8. Storn, R., Price, K.: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Storn, R., Price, K.: Home Page of Differential Evolution (2003), Available online at, http://www.ICSI.Berkeley.edu/~storn/code.html

  10. Lampinen, J.: A bibliography of differential evolution algorithm. Available online at, http://www2.lut.fi/~jlampine/debiblio.htm

  11. Abbass, H.A., Sarker, R., Newton, C.: PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC2001), vol. 2, Piscataway, New Jersey, IEEE Service Center, pp. 971–978 (2001)

    Google Scholar 

  12. Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: Congress on Evolutionary Computation (CEC2002), vol. 1, New Jersey, IEEE Service Center, pp. 831–836 (2002)

    Google Scholar 

  13. Madavan, N.K.: Multiobjective optimization using a pareto differential evolution approach. In: Congress on Evolutionary Computation (CEC2002), vol. 2, Piscataway, New Jersey, IEEE Service Center, pp. 1145–1150 (2002)

    Google Scholar 

  14. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC2003), vol. 2, Canberra, Australia, pp. 862–869. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  15. Robič, T., Filipič, B.: DEMO: Differential Evolution for Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)

    Google Scholar 

  16. Fang, K.T., Ma, C.X.: Orthogonal and Uniform Design ((in Chinese)). Science Press, Beijing (2001)

    Google Scholar 

  17. Leung, Y.W., Wang, Y.: An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation 5(1), 41–53 (2001)

    Article  Google Scholar 

  18. Zeng, S., Kang, L., Ding, L.: An Orthogonal Multiobjective Evolutionary Algorithm for Multi-objective Optimization Problems with Constraints. Evolutionary Computation 12(1), 77–98 (2004)

    Article  Google Scholar 

  19. Zeng, S., Yao, S., Liu, L., Liu, Y.: An Efficient Multi-objective Evolutionary Algorithm: OMOEA-II. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 108–119. Springer, Heidelberg (2005)

    Google Scholar 

  20. Deb, K., Mohan, M., Mishra, S.: Towards a quick computation of well-spread Pareto-optimal solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)

    Article  Google Scholar 

  22. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)

    Article  Google Scholar 

  23. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Congress on Evolutionary Computation (CEC2002), pp. 825–830 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Cai, Z., Gong, W., Huang, Y. (2007). A Novel Differential Evolution Algorithm Based on ε-Domination and Orthogonal Design Method for Multiobjective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics