Nothing Special   »   [go: up one dir, main page]

Skip to main content

A First Investigation of Sturmian Trees

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

We consider Sturmian trees as a natural generalization of Sturmian words. A Sturmian tree is a tree having n + 1 distinct subtrees of height n for each n. As for the case of words, Sturmian trees are irrational trees of minimal complexity. We give various examples of Sturmian trees, and we characterize one family of Sturmian trees by means of a structural property of their automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carpi, A., de Luca, A., Varricchio, S.: Special factors and uniqueness conditions in rational trees. Theory of Computing Systems 34, 375–395 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Science 25, 95–165 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Mathematical Systems Theory 7, 138–153 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics, vol. 90. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  5. Pytheas-Fogg, N.: Substitutions in Dynamics, Arithmetics and Combinatorics (Edited by Berthé, V., et al). Lecture Notes in Mathematics, vol. 1794. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  6. Sakarovitch, J.: Élements de théorie des automates. Vuibert, Paris (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Berstel, J., Boasson, L., Carton, O., Fagnot, I. (2007). A First Investigation of Sturmian Trees. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics