Abstract
The Galois Sub-hierarchy (GSH) is a polynomial-size representation of a concept lattice which has been applied to several fields, such as software engineering and linguistics.
In this paper, we analyze the performances, in terms of computation time, of three GSH-building algorithms with very different algorithmic strategies: Ares, Ceres and Pluton. We use Java and C++ as implementation languages and Galicia as our development platform.
Our results show that implementations in C++ are significantly faster, and that in most cases Pluton is the best algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amer-Yahia, S., et al.: iO2 — An Algorithmic Method for Building Inheritance Graphs in Object Database Design. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 422–437. Springer, Heidelberg (1996)
Berry, A., et al.: Efficiently computing a linear extension of the sub-hierarchy of a concept lattice. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 208–222. Springer, Heidelberg (2005)
Dicky, H., et al.: ARES, un algorithme d’ajout avec restructuration dans les hiérarchies de classes. In: Proc. of LMO’94, L’Objet, pp. 125–136 (1994)
Dao, M., et al.: A New Approach to Factorization: Introducing Metrics. In: Proc. of Metrics ’02, pp. 227–236. IEEE Computer Society Press, Los Alamitos (2002)
Fura, L., et al.: Algorithme de construction d’une sous-hiérarchie de Galois. Technical report, Université de Montpellier II (2005)
GaLicia: Galois lattice interactive constructor. Université de Montréal. http://www.iro.umontreal.ca/~galicia
Godin, R., Chau, T.-T.: Comparaison d’algorithmes de construction de hiérarchies de classes. L’Objet 5(3/4) (1999)
Godin, R., Mili, H.: Building and Maintaining Analysis-Level Class Hierarchies using Galois Lattices. In: Proc. of OOPSLA ’93, vol. 28, Washington, DC, USA, Oct. 1993, pp. 394–410. ACM Press, New York (1993)
Godin, R., Mineau, G., Missaoui, R.: Incremental structuring of knowledge bases. In: Ellis, G., et al. (eds.) Proc. of KRUSE’95, pp. 179–193. University of California at Santa Cruz, Department of Computer Science (1995)
Godin, R., et al.: Design of Class Hierarchies based on Concept (Galois) Lattices. Theory and Practice of Object Systems 4(2), 117–134 (1998)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)
Huchard, M., Dicky, H., Leblanc, H.: Galois Lattice as a Framework to specify Algorithms Building Class Hierarchies. Theoretical Informatics and Applications 34, 521–548 (2000)
Hitzler, P.: Default reasoning over domains and concept hierarchies. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 351–365. Springer, Heidelberg (2004)
Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 189–216 (2002)
Leblanc, H.: Sous-hiérarchies de Galois: un modèle pour la construction et l’évolution des hiérarchies d’objets. PhD thesis, Univ. de Montpellier II (2000)
Mineau, G.W., Godin, R.: Automatic structuring of knowledge bases by conceptual clustering. IEEE Trans. Knowl. Data Eng. 7(5), 824–828 (1995)
Osswald, R., Petersen, W.: Induction of classifications from linguistic data. In: Proc. of ECAI’02 Workshop, July 2002, pp. 75–84. Université de Lyon I (2002)
Perrot, G.: Implémentation d’algorithmes de construction de sous-hiérarchies de Galois et étude des performances (2005)
Petersen, W.: A set-theoretical approach for the induction of inheritance hierarchies. Electronic Notes in Theoretical in Computer Science 51 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Arévalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A. (2007). Performances of Galois Sub-hierarchy-building Algorithms. In: Kuznetsov, S.O., Schmidt, S. (eds) Formal Concept Analysis. ICFCA 2007. Lecture Notes in Computer Science(), vol 4390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70901-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-70901-5_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70828-5
Online ISBN: 978-3-540-70901-5
eBook Packages: Computer ScienceComputer Science (R0)