Abstract
We present the first method to disprove innermost termination of term rewrite systems automatically. To this end, we first develop a suitable notion of an innermost loop. Second, we show how to detect innermost loops: One can start with any technique amenable to find loops. Then our novel procedure can be applied to decide whether a given loop is an innermost loop. We implemented and successfully evaluated our method in the termination prover AProVE.
Supported by the Deutsche Forschungsgemeinschaft (DFG) under grant GI 274/5-2.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge (1998)
Dershowitz, N.: Termination of rewriting. J. Symb. Comp. 3, 69–116 (1987)
Diekert, V.: Makanin’s algorithm. In: Lothaire, M. (ed.) Combinatorics on Words, pp. 387–442. Cambridge University Press, Cambridge (2002)
Endrullis, J.: Jambox, http://joerg.endrullis.de
Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)
Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005)
Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the DP framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)
Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated termination analysis for Haskell: From term rewriting to programming languages. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 297–312. Springer, Heidelberg (2006)
Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)
Gramlich, B.: Abstract relations between restricted termination and confluence properties of rewrite systems. Fundamenta Informaticae 24, 3–23 (1995)
Guttag, J., Kapur, D., Musser, D.: On proving uniform termination and restricted termination of rewriting systems. SIAM J. Computation 12, 189–214 (1983)
Hermann, M., Galbavý, R.: Unification of infinite sets of terms schematized by primal grammars. Theoretical Computer Science 176(1-2), 111–158 (1997)
Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)
Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer, Dordrecht (2000)
Kruskal, J.B.: Well-quasi-orderings, the Tree Theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society 95, 210–223 (1960)
Kurth, W.: Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel. PhD thesis, Technische Universität Clausthal, Germany (1990)
Lankford, D., Musser, D.: A finite termination criterion. Unpublished Draft. USC Information Sciences Institute (1978)
Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)
Payet, É.: Detecting non-termination of term rewriting systems using an unfolding operator. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 194–209. Springer, Heidelberg (2007)
Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting. PhD thesis, RWTH Aachen University. Technical Report AIB-2007-17 (2007), http://aib.informatik.rwth-aachen.de/2007/2007-17.pdf
Vroon, D.: Personal communication (2007)
Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004)
Zantema, H.: Termination of string rewriting proved automatically. Journal of Automated Reasoning 34, 105–139 (2005)
Zhang, X.: Overlap closures do not suffice for termination of general term rewriting systems. Information Processing Letters 37(1), 9–11 (1991)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thiemann, R., Giesl, J., Schneider-Kamp, P. (2008). Deciding Innermost Loops. In: Voronkov, A. (eds) Rewriting Techniques and Applications. RTA 2008. Lecture Notes in Computer Science, vol 5117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70590-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-70590-1_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70588-8
Online ISBN: 978-3-540-70590-1
eBook Packages: Computer ScienceComputer Science (R0)