Abstract
The SFLASH signature scheme stood for a decade as the most successful cryptosystem based on multivariate polynomials, before an efficient attack was finally found in 2007. In this paper, we review its recent cryptanalysis and we notice that its weaknesses can all be linked to the fact that the cryptosystem is built on the structure of a large field. As the attack demonstrates, this richer structure can be accessed by an attacker by using the specific symmetry of the core function being used. Then, we investigate the effect of restricting this large field to a purely linear subset and we find that the symmetries exploited by the attack are no longer present. At a purely defensive level, this defines a countermeasure which can be used at a moderate overhead. On the theoretical side, this informs us of limitations of the recent attack and raises interesting remarks about the design itself of multivariate schemes.
Correspondence to BY at by@moscito.org; a full version of this extended abstract available from the authors, also cf. ePrint at http://eprint.iacr.org/2007/366 .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
European project IST-1999-12324 on New European Schemes for Signature, Integrity and Encryption, http://www.cryptonessie.org
Daniel, J.: Bernstein. eBATs benchmark results, http://ebats.cr.yp.to
Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical Cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)
Dubois, V., Fouque, P.-A., Stern, J.: Cryptanalysis of SFLASH with Slightly Modified Parameters. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 264–275. Springer, Heidelberg (2007)
Dubois, V., Granboulan, L., Stern, J.: An Efficient Provable Distinguisher for HFE. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 156–167. Springer, Heidelberg (2006)
Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with Internal Perturbation. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 249–265. Springer, Heidelberg (2007)
Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006)
Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate Schemes.. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)
Goldman, J., Rota, G.-C.: The Number of Subspaces of a Vector Space. In: Tutte, W.T. (ed.) Recent Progress in Combinatorics, pp. 75–83. Academic Press, London (1969)
Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its applications, vol. 20. Cambridge University Press, Cambridge (1997)
Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)
McEliece, R.J.: A Public-Key Cryptosystem based on Algebraic Coding Theory. In: JPL DSN Progress Report, pp. 114–116. California Inst. Technol., Pasadena (1978)
NESSIE, New European Schemes for Signatures, Integrity, and Encryption. Portfolio of Recommended Cryptographic Primitives, http://www.nessie.eu.org
Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)
Patarin, J., Goubin, L., Courtois, N.: \(C^{\mbox{*}}\) \(_{\mbox{-+}}\) and HM: Variations Around Two Schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)
Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg (1994)
Specifications of SFLASH. Final Report NESSIE, pp. 669–677 (2004)
Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations. ePrint Archive Report 2005/077, http://eprint.iacr.org/2005/077
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ding, J., Dubois, V., Yang, BY., Chen, O.CH., Cheng, CM. (2008). Could SFLASH be Repaired?. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70583-3_56
Download citation
DOI: https://doi.org/10.1007/978-3-540-70583-3_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70582-6
Online ISBN: 978-3-540-70583-3
eBook Packages: Computer ScienceComputer Science (R0)