Abstract
Prediction of abdominal organ positions during free breathing is a major challenge from which several medical applications could benefit. For instance, in radiotherapy it would reduce the healthy tissue irradiation. In this paper, we present a method to predict in real-time the abdominal organs position during free breathing. This method needs an abdo-thoracic preoperative CT image, a second one limited to the diaphragm zone, and a tracking of the patient skin motion. It also needs the segmentation of the skin, the viscera volume and the diaphragm in both preoperative images. First, a physical analysis of the breathing motion shows it is possible to predict abdominal organs position from the skin position and a modeling of the diaphragm motion. Then, we present our original method to compute a deformation field that considers the abdominal and thoracic breathing influence. Finally, we show on two human data that our simulation model can predict several organs position at 50 Hz with accuracy within 2-3 mm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balter, J.M., Lam, K.L., McGinn, C.J., Lawrence, T.S., Ten Haken, R.K.: Improvement of CT-based treatment planning models of abdominals targets using static exhale imaging. Int. J. Radiation Oncology Biol. Phys. 41(4), 939–943 (1998)
Brock, K.K., Sharpe, M.B., Dawson, L.A., Kim, S.M., Jaffray, D.A.: Accuracy of finite element model-based multi-organ deformable image registration. Med. Phys. 32(6), 1647–1659 (2005)
Clifford, M.A., Banovac, F., Levy, E., Cleary, K.: Assessment of hepatic motion secondary to respiration for computer assisted interventions. Computer Aided Surgery 7, 291–299 (2002)
Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. The Visual Computer 16(8), 437–452 (2000)
Delingette, H., Cotin, S., Ayache, N.: Efficient linear elastic models of soft tissues for real-time surgery simulation. In: MMVR 7 (Medicine Meets Virtual Reality), pp. 139–151 (1999)
Didier, A.L., Villard, P.F., Bayle, J.Y., Beuve, M., Shariat, B.: Breathing thorax simulation based on pleura behaviour and rib kinematics. Information Visualisation - MediVis, 35-40 (2007)
Schwartza, J.M., Denningerb, M., Rancourtb, D., Moisanc, C., Laurendeau, D.: Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Medical Image Analysis 9(2), 103–112 (2005)
Hostettler, A., Nicolau, S.A., Soler, L., Remond, Y.: Toward an accurate real time simulation of internal organ motions during free breathing from skin motion tracking and an a priori knowledge of the diaphragm motion. Int. J. of Computer assisted radiology and surgery 2(suppl. 1), 100–102 (2007)
Hostettler, A., Nicolau, S.A., Soler, L., Remond, Y.: Real time simulation of organ motions induced by breathing: First evaluation on patient data. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 9–18. Springer, Heidelberg (2006)
Remouchamps, V.M., Vicini, F.A., Sharpe, M.B., Kestin, L.L., Martinez, A.A., Wong, J.W.: Significant reductions in heart and lung doses using deep inspiration breathe hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int. J. Radiation Oncology Biol. Phys. 55, 392–406 (2003)
Sarrut, D., Boldea, V., Miguet, S., Ginestet, C.: Simulation of 4d ct images from deformable registration between inhale and exhale breath-hold ct scans. Medical physics 33(3), 605–617 (2006)
Secomb, T.W., El-Kareh, A.W.: A theoretical model for the elastic properties of very soft tissues. Biorheology 38(4), 305–317 (2001)
Kühnapfel, U., Çakmak, H.K., Maaß, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Computer and Graphics 24(5), 671–682 (2000)
Wong, J.W., Sharpe, M.B., Jaffray, D.A., Kini, V.R., Robertson, J.M., Stromberg, J.S., Martinez, A.A.: The use of active breathing control (abc) to reduce margin for breathing motion. Int. J. Radiation Oncology Biol. Phys. 44(4), 911–919 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hostettler, A., Nicolau, S.A., Soler, L., Rémond, Y., Marescaux, J. (2008). A Real-Time Predictive Simulation of Abdominal Organ Positions Induced by Free Breathing. In: Bello, F., Edwards, P.J.E. (eds) Biomedical Simulation. ISBMS 2008. Lecture Notes in Computer Science, vol 5104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70521-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-70521-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70520-8
Online ISBN: 978-3-540-70521-5
eBook Packages: Computer ScienceComputer Science (R0)