Abstract
This book investigates a wide selection of the world’s glaciers and the status of remote-sensing and GIS technologies designed to address their global monitoring in this age of rapid climate change impacts on glaciers and increasing awareness of the policy and economic relevance of glaciers in areas as diverse as water resources and geohazards. This chapter focuses on an important part of the data component, especially data from the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) project, which also spawned the Global Land Ice Measurements from Space (GLIMS) project as an ASTER Science Team member project (see Foreword by Hugh Kieffer). ASTER’s combination of sensor systems, spanning the visible through thermal infrared and its stereo-imaging capability, the high radiometric and geometric fidelity of the cameras, combined with a liberal data dissemination policy for glacier images, have made it a favored instrument for glacier remote-sensing studies. Operational use of the instrument with on-demand targeting has also aided specific studies ranging from preplanned field campaigns to rapid response to glacier-related disasters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arai, K., and Tonooka, H. (2005) Radiometric performance evaluation of ASTER VNIR, SWIR, and TIR. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2725–2732.
Arai, K., Thome, K., Iwasaki, A., and Biggar, S. (2011) ASTER VNIR and SWIR Radiometric Calibration and Atmospheric Correction. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.
ATBD (1999) Algorithm Theoretical Basis Document for ASTER Level 2B1 Surface Radiance and Level 2B5 Surface Reflectance. Principal Investigator: Kurt Thome. Available at http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-07-09.pdf
Bishop, M.P., Olsenholler, J.A., Shroder, J.F., Barry, R.G., Raup, B.H., Bush, A.B.G., Copland, L., Dwyer, J.L., Fountain, A.G., Haeberli, W. et al. (2004) Global Land Ice Measurements from Space (GLIMS): Remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto International, 19(2), 57–84.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.G., Frey, H., Kargel, J.S., Fujita, K., Scheel, M. et al. (2012) The state and fate of Himalayan glaciers. Science, 336, 310–314, and supplemental online material.
Chrysoulakis N., Abrams, M., Kamarianakis, Y., and Stanislawski, M. (2011) Validation of ASTER GDEM for the area of Greece. Photogrammetric Engineering & Remote Sensing, 77(2), 157–165.
Daucsavage, J., Kaminski, M., Ramachandran, B., Jenkerson, C., Sprenger, K., Faust, R., and Rockvam, T. (2011) ASTER and MODIS land data management at the land processes, and National Snow and Ice Data Centers. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.
Fujisada, H. (2011) Terra ASTER instrument design and geometry. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.
Gardelle, J., Berthier, E., and Arnaud, Y. (2012a) Slight mass gain of Karakoram glaciers in the early twentyfirst century. Nature Geoscience, 5, 322–325.
Gardelle, J., Berthier, E., and Arnaud, Y. (2012b) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. Journal of Glaciology, 58(208), 419–422.
Gesch, D.B., Oimoen, M.J., Zhang, Z., Meyer, D.J., and Danielson, J.J. (2012) Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(B4).
Gillespie, A.R., Rokugawa, S., Matsunaga T., Cothern, S., Hook, S.J., and Kahle, A.B. (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113–1126.
Gustafson, W.T., Gillespie, A.R., and Yamada, G. (2006) Revisions to the ASTER temperature/emissivity separation algorithm. In: J.A. Sobrino (Ed.), Second Recent Advances in Quantitative Remote Sensing. Publicacions de la Universitat de Vale`ncia, Spain, pp. 770–775.
Iwasaki, A., and Fujisada, H. (2005) ASTER geometric performance. IEEE Transactions on Geoscience and Remote Sensing, 43, 2700–2706.
Iwasaki, A., and Tonooka, H. (2005) Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Transactions on Geoscience and Remote Sensing, 43, 2747–2751.
JPL (2001) ASTER Higher-Level Product User Guide, Version 2.0 (JPL D-20062). JPL-CalTech, Pasadena, CA.
Kääb, A., Huggel, C., Paul, F., Wessels, R., Raup, B., Kieffer, H., and Kargel, J. (2003a) Glacier Monitoring from ASTER imagery: Accuracy and applications. Paper presented at Proceedings of EARSeL LISSIG Workshop: Observing Our Cryosphere from Space, Bern, March 11–13, 2002 (EARSeL eProceedings No. 2, pp. 43–53).
Kääb A., Wessels, R., Haeberli, W., Huggel, C., Kargel, J.S., and Khalsa, S.J.S (2003b) Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters. EOS Trans. Am. Geophys. Union, 84(13), 117–121.
Kargel, J.S., Abrams, M.J., Bishop, M.P., Bush, A., Hamilton, G., Jiskoot, H., Kääb, A., Kieffer, H.H., Lee, E.M., Paul, F. et al. (2005). Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment, 99, 187–219.
Kargel, J.S., Leonard, G., Crippen, R.E., Delaney, K.B., Evans, S.G., and Schneider, J. (2010) Satellite monitoring of Pakistan’s rockslide-dammed Lake Gojal. EOS Trans. Am. Geophys. Union, 91(43), doi: 10.1029/2010EO430002.
Kargel, J., Furfaro, R., Kaser, G., Leonard, G., Fink, W., Huggel, C., Kääb, A., Raup, B., Reynolds, J., Wolfe, D. et al. (2011). ASTER imaging and analysis of glacier hazards. In: B. Ramachandran, C.O. Justice, and M.J. Abrams (Eds.), Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of Terra and Aqua. Springer-Verlag, New York, pp. 325–373.
Kargel, J.S., Ahlstrøm, A.P., Alley, R.B., Bamber, J.L., Benham, T.J., Box, J.E., Chen, C., Christoffersen, P., Citterio, M., Cogley, J.G. et al. (2012a) (Brief Communication) Greenland’s shrinking ice cover: ‘‘Fast times’’ but not that fast. The Cryosphere, 6, 533–537. Available at http://www.the-cryosphere.net/6/533/2012/ doi: 10.5194/tc-6-533-2012.
Kargel, J.S., Alho, P., Buytaert, W., Celleri, R., Cogley, J.G., Dussaillant, A., Zambrano, G., Haeberli, W. Harrison, S., Leonard, G. et al. (2012b) Glaciers in Patagonia: Controversy and Prospects. EOS Trans. Am. Geophys. Union, 93, 212.
Kieffer, H., Kargel, J., Barry, R., Bindschadler, R., Bishop, M., MacKinnon, D., Ohmura, A., Raup, B., Antoninetti, M., Bamber, J. et al. (2000) New eyes in the sky measure glaciers and ice sheets. EOS Trans. Am. Geophys. Union, 81(24), June 13.
Matsunaga, T. (1994) A temperature-emissivity separation method using an empirical relationship between the mean, the maximum, and the minimum of the thermal infrared emissivity spectrum. Journal of Remote Sensing Society of Japan, 14(2), 230–241 [in Japanese with English abstract].
Nuth, C. and Kääb, A. (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5, 271–290.
Plafcan, D. (2011) Technoscientific diplomacy: The practice of international politics in the ASTER collaboration. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.
Ramachandran, B., Justice, C., and Abrams, M. (2011) Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.
Raup, B.H., and J.S. Kargel (2012) Global land ice measurements from space (GLIMS). In: R.S. Williams and J.G. Ferrigno (Eds.), Satellite Image Atlas of the Glaciers of the World, Volume A—State of the Earth’s Cryosphere at the Beginning of the 21st Century: Glaciers, Snow Cover, Floating Ice, and Permafrost and Periglacial Environments (in press).
Raup, B.H., Kieffer, H.H., Hare, T.M., and Kargel, J.S. (2000) Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target: Glaciers. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 1105–1112.
Raup, R., Kääb, A., Kargel, J.S., Bishop, M.P., Hamilton, G., Lee, E., Paul, F., Rau, F., Soltesz, D., Khalsa, S.J.S. et al. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers and Geoscience, doi: 10.1016/j.cageo.2006.05.015.
Sakuma, F., Kikuchi, M., Ohgi, N., Inada, H., Akagi, S., and Ono, H. (2011) Eleven years of ASTER onboard calibration. Proc. SPIE 8176, Sensors, Systems, and Next-Generation Satellites XV, 81760F (October 3, 2011), doi: 10.1117/12.897744.
Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A. (2011) Characteristics of ASTER GDEM Version 2. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) Proceedings, pp. 3657–3660.
Tonooka, H. (2011) ASTER TIR radiometric calibration and atmospheric correction. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.
Tonooka, H., and Iwasaki, A. (2003) Improvement of ASTER/SWIR crosstalk correction. Proc. SPIE 5234, pp. 168–179.
Toutin, T. (2011). ASTER stereoscopic data and digital elevation models. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.
Watanabe, H., Bailey, G.B., Duda, K., Kannari, Y., Miura, A., and Ramachandran, B. (2011) The ASTER data system: An overview of the data products in Japan and in the United States. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.
Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami, T., and Pniel, M. (1998) Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071.
Acknowledgments
We would like to thank Masami Hato (ERSDAC, Tokyo), Ken Duda (LP DAAC, Sioux Falls), and Bjorn Eng (JPL, Pasadena) for their help in tracking down certain critical details of the ASTER mission. We also thank Alan Gillespie (University of Washington, Seattle) for his updates and clarifications regarding the TES algorithm. ASTER data courtesy of NASA/GSFC/METI/Japan Space Systems, the U.S./Japan ASTER Science Team, and the GLIMS project.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ramachandran, B., Dwyer, J., Raup, B.H., Kargel, J.S. (2014). ASTER Datasets and Derived Products for Global Glacier Monitoring. In: Kargel, J., Leonard, G., Bishop, M., Kääb, A., Raup, B. (eds) Global Land Ice Measurements from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79818-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-79818-7_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79817-0
Online ISBN: 978-3-540-79818-7
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)